论文标题

关于Happel的两个结果的概括

On a generalization of two results of Happel to commutative rings

论文作者

Puthenpurakal, Tony J.

论文摘要

在本文中,我们将Happel的两个结果扩展到了交换戒指。令$(a,\ mathfrak {m})$为可交换的Noetherian本地戒指。令$ d^b_f(mod \ a)$为有限生成的模块的复合物的有限衍生的类别,其$ a $ a $具有有限的长度共同体。我们显示$ d^b_f(mod \ a)$在且仅当$ a $是常规的情况下,具有Auslander-Reiten(ar) - 三角形。令$ k^b_f(proj \ a)$为有限生成的免费$ a $ a $模块的有限生成的有限长度共同体的同型类别。我们表明,如果$ a $已完成,并且如果$ a $是gorenstein,则$ k^b_f(proj \ a)$具有AR三角形。相反,我们表明,如果$ k^b_f(proj \ a)$具有AR三角形,并且如果$ a $是cohen-macaulay,或者如果$ \ \ \ dim a = 1 $ = 1 $,则$ a $是gorenstein。

In this paper we extend two results of Happel to commutative rings. Let $(A, \mathfrak{m})$ be a commutative Noetherian local ring. Let $D^b_f(mod \ A)$ be the bounded derived category of complexes of finitely generated modules over $A$ with finite length cohomology. We show $D^b_f( mod \ A)$ has Auslander-Reiten(AR)-triangles if and only if $A$ is regular. Let $K^b_f(proj \ A)$ be the homotopy category of finite complexes of finitely generated free $A$-modules with finite length cohomology. We show that if $A$ is complete and if $A$ is Gorenstein then $K^b_f( proj \ A)$ has AR triangles. Conversely we show that if $K^b_f(proj \ A)$ has AR triangles and if $A$ is Cohen-Macaulay or if $\dim A = 1$ then $A$ is Gorenstein.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源