论文标题
动态基因环境相互作用的功能变化索引系数模型
Functional varying index coefficient model for dynamic gene-environment interactions
论文作者
论文摘要
人类复杂疾病植根于遗传学,在很大程度上受环境因素的影响。现有文献通过考虑环境混合物对疾病风险的关节作用来表明综合基因 - 环境相互作用分析的力量。在这项工作中,我们提出了一个功能性变化的指数系数模型,用于对表型性状的纵向测量以及多个环境变量,并评估如何通过环境影响的混合物对遗传影响对纵向疾病性状的影响进行非线性修饰。我们得出了在二次推理函数和受惩罚的样条框架下的非参数功能变化索引系数的估计过程。建立了理论上的结果,例如估计的一致性和渐近正态性。此外,我们提出了一种假设测试程序,以评估非参数指数系数函数的重要性。我们通过蒙特卡洛模拟研究评估了估计和测试程序的性能。通过应用于疼痛敏感性研究的真实数据集来说明所提出的方法,在该研究中,SNP效应通过剂量水平和其他环境变量的结合而非线性调节,以影响患者的血压和心率。
Rooted in genetics, human complex diseases are largely influenced by environmental factors. Existing literature has shown the power of integrative gene-environment interaction analysis by considering the joint effect of environmental mixtures on a disease risk. In this work, we propose a functional varying index coefficient model for longitudinal measurements of a phenotypic trait together with multiple environmental variables, and assess how the genetic effects on a longitudinal disease trait are nonlinearly modified by a mixture of environmental influences. We derive an estimation procedure for the nonparametric functional varying index coefficients under the quadratic inference function and penalized spline framework. Theoretical results such as estimation consistency and asymptotic normality of the estimates are established. In addition, we propose a hypothesis testing procedure to assess the significance of the nonparametric index coefficient function. We evaluate the performance of our estimation and testing procedure through Monte Carlo simulation studies. The proposed method is illustrated by applying to a real data set from a pain sensitivity study in which SNP effects are nonlinearly modulated by the combination of dosage levels and other environmental variables to affect patients' blood pressure and heart rate.