论文标题
可持续区块链的联合学习共识机制的无平台证明
A Platform-Free Proof of Federated Learning Consensus Mechanism for Sustainable Blockchains
论文作者
论文摘要
作为区块链的代表性共识协议,工作证明(POW)消耗了大量的计算和能量来确定矿工之间的簿记权,但没有实现任何实际目的。为了解决POW的弊端,我们提出了一种名为“无平台学习”(PF-POFL)的新型能量重新回收共识机制,该机制(PF-POFL)利用了最初浪费在解决艰苦而毫无意义的POW谜题的计算能力来执行实用联邦学习(FL)任务(FL)任务。然而,由于不受信任的环境和矿工的自私特征,可能会引起潜在的安全威胁和效率问题。在本文中,PF-POFL通过设计一种新颖的块结构,新的交易类型和基于信用的激励措施,可以以完全分散的方式进行有效的人工智能(AI)任务外包,联合采矿,模型评估和奖励分配,同时抵制欺骗和宣传和Sybil攻击。此外,PF-POFL为矿工提供了用户级别的差异隐私机制,以防止训练FL模型中的隐式隐私泄漏。此外,通过考虑不同的FL任务下的动态矿工特征(例如训练样本,非IID学位和网络延迟),提出了一种基于联邦组的机制,以分布形成具有NASH稳定性融合的优化分离矿工分配结构。广泛的模拟验证了PF-POFL的效率和有效性。
Proof of work (PoW), as the representative consensus protocol for blockchain, consumes enormous amounts of computation and energy to determine bookkeeping rights among miners but does not achieve any practical purposes. To address the drawback of PoW, we propose a novel energy-recycling consensus mechanism named platform-free proof of federated learning (PF-PoFL), which leverages the computing power originally wasted in solving hard but meaningless PoW puzzles to conduct practical federated learning (FL) tasks. Nevertheless, potential security threats and efficiency concerns may occur due to the untrusted environment and miners' self-interested features. In this paper, by devising a novel block structure, new transaction types, and credit-based incentives, PF-PoFL allows efficient artificial intelligence (AI) task outsourcing, federated mining, model evaluation, and reward distribution in a fully decentralized manner, while resisting spoofing and Sybil attacks. Besides, PF-PoFL equips with a user-level differential privacy mechanism for miners to prevent implicit privacy leakage in training FL models. Furthermore, by considering dynamic miner characteristics (e.g., training samples, non-IID degree, and network delay) under diverse FL tasks, a federation formation game-based mechanism is presented to distributively form the optimized disjoint miner partition structure with Nash-stable convergence. Extensive simulations validate the efficiency and effectiveness of PF-PoFL.