论文标题
使用信仰传播的无缝跟踪小组目标和未分组的目标
Seamless Tracking of Group Targets and Ungrouped Targets Using Belief Propagation
论文作者
论文摘要
本文考虑了跟踪大量组目标的问题。通常,在大多数跟踪方案中,多目标都被认为具有独立的运动,并且分离良好。但是,对于小组目标跟踪(GTT),组内的目标是紧密间隔并以协调的方式移动,组可以分裂或合并,并且组中的目标数可能很大,这会导致更具挑战性的数据关联,过滤和计算问题。在信仰传播(BP)框架内,我们通过共同推断目标存在变量,组结构,数据关联和目标状态提出了可扩展的群体目标信念传播(GTBP)方法。该方法可以通过在设计因子图上进行信念传播来有效地计算这些变量边际后验分布的近似值。结果,GTBP能够捕获组结构的变化,例如组分裂和合并。此外,我们将目标的演变建模为可能的组结构和相应概率指定的组或单目标运动的合作。这种灵活的建模可实现多个组目标和未分组目标的无缝和同时跟踪。特别是,GTBP具有出色的可扩展性和低计算复杂性。它不仅保持与BP相同的可伸缩性,即在传感器测量的数量中线性缩放,并在目标数量中二次地缩放,而且仅在保留的组分区数量中线性缩放。最后,提出了数值实验,以证明所提出的GTBP方法的有效性和可扩展性。
This paper considers the problem of tracking a large-scale number of group targets. Usually, multi-target in most tracking scenarios are assumed to have independent motion and are well-separated. However, for group target tracking (GTT), the targets within groups are closely spaced and move in a coordinated manner, the groups can split or merge, and the numbers of targets in groups may be large, which lead to more challenging data association, filtering and computation problems. Within the belief propagation (BP) framework, we propose a scalable group target belief propagation (GTBP) method by jointly inferring target existence variables, group structure, data association and target states. The method can efficiently calculate the approximations of the marginal posterior distributions of these variables by performing belief propagation on the devised factor graph. As a consequence, GTBP is capable of capturing the changes in group structure, e.g., group splitting and merging. Furthermore, we model the evolution of targets as the co-action of the group or single-target motions specified by the possible group structures and corresponding probabilities. This flexible modeling enables seamless and simultaneous tracking of multiple group targets and ungrouped targets. Particularly, GTBP has excellent scalability and low computational complexity. It not only maintains the same scalability as BP, i.e., scaling linearly in the number of sensor measurements and quadratically in the number of targets, but also only scales linearly in the number of preserved group partitions. Finally, numerical experiments are presented to demonstrate the effectiveness and scalability of the proposed GTBP method.