论文标题

通过深度学习预测F135 PW100 Turbofan发动机的能量和自我性能

Prediction of the energy and exergy performance of F135 PW100 turbofan engine via deep learning

论文作者

Sabzehali, Mohammadreza, Rabieeb, Amir Hossein, Alibeigia, Mahdi, Mosavi, Amir

论文摘要

在本研究中,研究了Flight-Mach数量,飞行高度,燃料类型和进气温的影响对推力燃油消耗,推力,进气口质量流量,热和推进效率以及F135 PW100发动机的驱动效率以及发射效率以及发射效率的影响。根据第一阶段获得的结果,为了对上述发动机周期的热力学性能进行建模,飞行跑车的数量和飞行高度分别被认为分别为2.5和30,000 m。由于在高空飞行条件下超音速飞行的运行优势以及氢燃料的较高推力。因此,在第二阶段,考虑到上述飞行条件,已经获得了智能模型,以预测使用深度学习方法的输出参数(即推力,推力特定的燃料消耗和整体燃油效率)。在达到的深神经模型中,高压涡轮机,风扇压力比,涡轮机入口温度,进气温度和旁路比的压力比被视为输入参数。提供的数据集随机分为两组:第一组包含6079个用于模型训练的样本,第二组包含1520个用于测试的样本。特别是,ADAM优化算法,均方根误差的成本函数以及整流线性单元的活动函数用于训练网络。结果表明,深层神经模型的误差百分比等于5.02%,1.43%和2.92%,以预测推力,推力特定的燃料消耗和整体驱动效率,这表明已达到的模型在估计本问题的输出参数方面的成功。

In the present study, the effects of flight-Mach number, flight altitude, fuel types, and intake air temperature on thrust specific fuel consumption, thrust, intake air mass flow rate, thermal and propulsive efficiecies, as well as the exergetic efficiency and the exergy destruction rate in F135 PW100 engine are investigated. Based on the results obtained in the first phase, to model the thermodynamic performance of the aforementioned engine cycle, Flight-Mach number and flight altitude are considered to be 2.5 and 30,000 m, respectively; due to the operational advantage of supersonic flying at high altitude flight conditions, and the higher thrust of hydrogen fuel. Accordingly, in the second phase, taking into account the mentioned flight conditions, an intelligent model has been obtained to predict output parameters (i.e., thrust, thrust specific fuel consumption, and overall exergetic efficiency) using the deep learning method. In the attained deep neural model, the pressure ratio of the high-pressure turbine, fan pressure ratio, turbine inlet temperature, intake air temperature, and bypass ratio are considered input parameters. The provided datasets are randomly divided into two sets: the first one contains 6079 samples for model training and the second set contains 1520 samples for testing. In particular, the Adam optimization algorithm, the cost function of the mean square error, and the active function of rectified linear unit are used to train the network. The results show that the error percentage of the deep neural model is equal to 5.02%, 1.43%, and 2.92% to predict thrust, thrust specific fuel consumption, and overall exergetic efficiency, respectively, which indicates the success of the attained model in estimating the output parameters of the present problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源