论文标题
换衣人的身份敏感知识传播重新识别
Identity-Sensitive Knowledge Propagation for Cloth-Changing Person Re-identification
论文作者
论文摘要
近年来,旨在在衣服变化下与人身份相匹配的换衣服重新识别(CC-REID)是近年来的一个新的研究主题。但是,典型的基于生物识别的CC-REID方法通常需要繁琐的姿势或身体部位估计器来从人类生物特征性状中学习布料 - 呈卵子的特征,这具有较高的计算成本。此外,由于监视图像的分辨率下降,性能受到了限制。为了解决上述限制,我们为CC-REID提出了一个有效的身份敏感知识传播框架(DeskPro)。具体而言,引入了一个布 - 卷积空间注意模块,以通过从人解析模块中获取知识来消除服装外观的注意力。为了减轻人脸的解决方案降解问题和对矿山身份敏感的提示,我们建议使用先前的面部知识恢复缺失的面部细节,然后将其传播到较小的网络。训练后,不再需要进行人类解析或面部修复的额外计算。广泛的实验表明,我们的框架的表现优于最先进的方法。我们的代码可在https://github.com/kimbingng/deskpro上找到。
Cloth-changing person re-identification (CC-ReID), which aims to match person identities under clothing changes, is a new rising research topic in recent years. However, typical biometrics-based CC-ReID methods often require cumbersome pose or body part estimators to learn cloth-irrelevant features from human biometric traits, which comes with high computational costs. Besides, the performance is significantly limited due to the resolution degradation of surveillance images. To address the above limitations, we propose an effective Identity-Sensitive Knowledge Propagation framework (DeSKPro) for CC-ReID. Specifically, a Cloth-irrelevant Spatial Attention module is introduced to eliminate the distraction of clothing appearance by acquiring knowledge from the human parsing module. To mitigate the resolution degradation issue and mine identity-sensitive cues from human faces, we propose to restore the missing facial details using prior facial knowledge, which is then propagated to a smaller network. After training, the extra computations for human parsing or face restoration are no longer required. Extensive experiments show that our framework outperforms state-of-the-art methods by a large margin. Our code is available at https://github.com/KimbingNg/DeskPro.