论文标题

重新介绍表面贡献的热锁:Dirichlet半透明边界条件

Resummed heat-kernel for surface contributions: Dirichlet semitransparent boundary conditions

论文作者

Franchino-Viñas, S. A.

论文摘要

在本文中,我们考虑了对Laplace操作员的热锁痕迹的重新定义表达式,后者在平面空间中包含一个势态度的表面上,包括潜在的和施加的dirichlet dirichlet半透明边界条件。我们获得了对应于电势力量的热内内核的一阶和二阶扩展的重新介绍的表达式。我们展示了如何应用这些结果以在$ d = 4 $中获得标量量子场理论的散装和表面形式,并将Yukawa耦合到背景。给出了形式因素的表征,以伪分化的算子。此外,我们讨论了Dirichlet半透明,Dirichlet和Robin边界条件的热销之间的联系。

In this article we consider resummed expressions for the heat-kernel's trace of a Laplace operator, the latter including a potential and imposing Dirichlet semitransparent boundary conditions on a surface of codimension one in flat space. We obtain resummed expressions that correspond to the first and second order expansion of the heat-kernel in powers of the potential. We show how to apply these results to obtain the bulk and surface form factors of a scalar quantum field theory in $d=4$ with a Yukawa coupling to a background. A characterization of the form factors in terms of pseudo-differential operators is given. Additionally, we discuss a connection between heat-kernels for Dirichlet semitransparent, Dirichlet and Robin boundary conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源