论文标题
全球经典解决方案,用于3D外部域中完整可压缩的Navier-Stokes系统
Global Classical Solutions to the Full Compressible Navier-Stokes System in 3D Exterior Domains
论文作者
论文摘要
研究了三维(3D)外部结构域中粘性,可压缩性,热传导性和牛顿多变态流体的全部可压缩Navier-Stokes System(FNS)。对于速度上的滑动边界条件和温度下的诺伊曼(Neumann)的初始界价问题,这表明存在一种独特的全球经典解决方案,其初始数据具有很小的能量,但可能较大,但可能较大。特别是,最初允许密度和温度消失。这是3D外部域中FNS系统经典解决方案的第一个结果。
The full compressible Navier-Stokes system (FNS) describing the motion of a viscous, compressible, heat-conductive, and Newtonian polytropic fluid in a three-dimensional (3D) exterior domain is studied. For the initial-boundary-value problem with the slip boundary conditions on the velocity and the Neumann one on the temperature, it is shown that there exists a unique global classical solutions with the initial data which are of small energy but possibly large oscillations. In particular, both the density and temperature are allowed to vanish initially. This is the first result about classical solutions of FNS system in 3D exterior domain.