论文标题

神经小说演员:为人类演员学习通用的动画神经代表

Neural Novel Actor: Learning a Generalized Animatable Neural Representation for Human Actors

论文作者

Wang, Yiming, Gao, Qingzhe, Liu, Libin, Liu, Lingjie, Theobalt, Christian, Chen, Baoquan

论文摘要

我们提出了一种新的方法,可以从多个人的一组多视图图像中学习通用的动画神经人类表示。学习的表示形式可用于从一组稀疏的相机中综合任意人的新型视图图像,并通过用户的姿势控制进一步使它们动画。尽管现有方法可以推广到新人,也可以通过用户控制综合动画,但它们都不能同时实现。我们将这一成就归因于用于共享多人人类模型的3D代理,并将不同姿势空间的翘曲延伸到共享的规范姿势空间,在该空间中,我们学习神经领域并预测依赖人和姿势依赖性变形,以及从输入图像中提取的功能。为了应对身体形状,姿势和衣服变形的较大变化的复杂性,我们以分离的几何形状和外观设计神经人类模型。此外,我们在空间点和3D代理的表面上都利用图像特征来预测人和姿势依赖性特性。实验表明,我们的方法在这两个任务上的最新方法都大大优于最先进的方法。该视频和代码可在https://talegqz.github.io/neural_novel_actor上找到。

We propose a new method for learning a generalized animatable neural human representation from a sparse set of multi-view imagery of multiple persons. The learned representation can be used to synthesize novel view images of an arbitrary person from a sparse set of cameras, and further animate them with the user's pose control. While existing methods can either generalize to new persons or synthesize animations with user control, none of them can achieve both at the same time. We attribute this accomplishment to the employment of a 3D proxy for a shared multi-person human model, and further the warping of the spaces of different poses to a shared canonical pose space, in which we learn a neural field and predict the person- and pose-dependent deformations, as well as appearance with the features extracted from input images. To cope with the complexity of the large variations in body shapes, poses, and clothing deformations, we design our neural human model with disentangled geometry and appearance. Furthermore, we utilize the image features both at the spatial point and on the surface points of the 3D proxy for predicting person- and pose-dependent properties. Experiments show that our method significantly outperforms the state-of-the-arts on both tasks. The video and code are available at https://talegqz.github.io/neural_novel_actor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源