论文标题

融合:一个多传感器校园场景数据集,用于评估本地化和映射精度

FusionPortable: A Multi-Sensor Campus-Scene Dataset for Evaluation of Localization and Mapping Accuracy on Diverse Platforms

论文作者

Jiao, Jianhao, Wei, Hexiang, Hu, Tianshuai, Hu, Xiangcheng, Zhu, Yilong, He, Zhijian, Wu, Jin, Yu, Jingwen, Xie, Xupeng, Huang, Huaiyang, Geng, Ruoyu, Wang, Lujia, Liu, Ming

论文摘要

组合多个传感器可以使机器人最大程度地提高其对环境的感知意识,并增强其对外部干扰的鲁棒性,对机器人导航至关重要。本文提出了可融合的基准测试,这是一个完整的多传感器数据集,具有多种移动机器人序列。本文提出了三项贡献。我们首先推进便携式和多功能的多传感器套件,可提供丰富的感官测量值:10Hz激光镜点云,20Hz立体声框架图像,高速公路和异步事件,来自立体声事件相机,200Hz IMU的200Hz惯性读数以及10Hz GPS信号。传感器已经在硬件中暂时同步。该设备轻巧,独立,并为移动机器人提供插件支持。其次,我们通过收集17个序列来构建数据集,该序列通过利用多个机器人平台进行数据收集来涵盖校园上各种环境。一些序列对现有的SLAM算法具有挑战性。第三,我们为将本地化和映射绩效评估提供了基础真相。我们还评估最新的大满贯方法并确定其局限性。该数据集将发布由原始传感器的设置,地面真相,校准数据和评估算法组成:https://ram-lab.com/file/site/site/multi-sensor-dataset。

Combining multiple sensors enables a robot to maximize its perceptual awareness of environments and enhance its robustness to external disturbance, crucial to robotic navigation. This paper proposes the FusionPortable benchmark, a complete multi-sensor dataset with a diverse set of sequences for mobile robots. This paper presents three contributions. We first advance a portable and versatile multi-sensor suite that offers rich sensory measurements: 10Hz LiDAR point clouds, 20Hz stereo frame images, high-rate and asynchronous events from stereo event cameras, 200Hz inertial readings from an IMU, and 10Hz GPS signal. Sensors are already temporally synchronized in hardware. This device is lightweight, self-contained, and has plug-and-play support for mobile robots. Second, we construct a dataset by collecting 17 sequences that cover a variety of environments on the campus by exploiting multiple robot platforms for data collection. Some sequences are challenging to existing SLAM algorithms. Third, we provide ground truth for the decouple localization and mapping performance evaluation. We additionally evaluate state-of-the-art SLAM approaches and identify their limitations. The dataset, consisting of raw sensor easurements, ground truth, calibration data, and evaluated algorithms, will be released: https://ram-lab.com/file/site/multi-sensor-dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源