论文标题

在广义(2+1)二维扭转模型中,Hartree-fock的动态质量产生方法

Hartree-Fock approach to dynamical mass generation in the generalized (2+1)-dimensional Thirring model

论文作者

Khunjua, T. G., Klimenko, K. G., Zhokhov, R. N.

论文摘要

通过Hartree-fock方法研究了(2+1)具有4组分费米景的宽大无质斜线模型。该模型的Lagrangian是由两个不同的四个特性结构构建的。其中一个考虑了fermion交互的矢量$ \ times $ vector频道与耦合常数$ g_v $,另一个 - 标量$ \ times $ sculetar通道与耦合$ g_s $。在裸露的耦合$ g_s $和$ g_v $之间的某种关系中,可以重新归一化的hartree-fock方程式,而迪拉克和霍尔丹福尔米质量的动态生成也是可以重新归一化的。结果,模型的相肖像由两个非平凡阶段组成。在第一个中,由于狄拉克质量术语的动态出现,手性对称性被自发损坏,而在第二阶段,空间奇偶校验$ \ Mathcal P $的自发断裂是由Haldane质量术语引起的。结果表明,在特定的纯扭曲模型的情况下,即在$ g_s = 0 $时,系统的基态确实是这些阶段的混合物。此外,发现任何有限数量的费米场都可以动态生成费米亚质量。

The (2+1)-dimensional generalized massless Thirring model with 4-component Fermi-fields is investigated by the Hartree-Fock method. The Lagrangian of this model is constructed from two different four-fermion structures. One of them takes into account the vector$\times$vector channel of fermion interaction with coupling constant $G_v$, the other - the scalar$\times$scalar channel with coupling $G_s$. At some relation between bare couplings $G_s$ and $G_v$, the Hartree-Fock equation for self-energy of fermions can be renormalized, and dynamical generation of the Dirac and Haldane fermion masses is possible. As a result, phase portrait of the model consists of two nontrivial phases. In the first one the chiral symmetry is spontaneously broken due to dynamical appearing of the Dirac mass term, while in the second phase a spontaneous breaking of the spatial parity $\mathcal P$ is induced by Haldane mass term. It is shown that in the particular case of pure Thirring model, i.e. at $G_s=0$, the ground state of the system is indeed a mixture of these phases. Moreover, it was found that dynamical generation of fermion masses is possible for any finite number of Fermi-fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源