论文标题
混合国家的利率统计理论
Rate-Distortion Theory for Mixed States
论文作者
论文摘要
本文与混合量子状态的集合的许多独立和相同分布的副本涉及量子数据压缩。编码器可以访问侧面信息系统。功绩的图是每拷贝或局部误差标准。速率理论研究压缩率和每副本误差之间的权衡。最佳权衡可以以率延伸功能为特征,这是一定的失真率的最佳利率。在本文中,我们得出了混合状态压缩的速率延伸函数。纠缠辅助和无辅助方案中的率延伸功能分别是单书的互信息数量和正规化纯化纠缠。对于考虑交流和纠缠消耗的一般环境,我们介绍了完整的量子问题区域。我们的压缩方案涵盖了盲型和可见的压缩模型(以及介于两者之间的其他模型),具体取决于侧面信息系统的结构。
This paper is concerned with quantum data compression of asymptotically many independent and identically distributed copies of ensembles of mixed quantum states. The encoder has access to a side information system. The figure of merit is per-copy or local error criterion. Rate-distortion theory studies the trade-off between the compression rate and the per-copy error. The optimal trade-off can be characterized by the rate-distortion function, which is the best rate given a certain distortion. In this paper, we derive the rate-distortion function of mixed-state compression. The rate-distortion functions in the entanglement-assisted and unassisted scenarios are in terms of a single-letter mutual information quantity and the regularized entanglement of purification, respectively. For the general setting where the consumption of both communication and entanglement are considered, we present the full qubit-entanglement rate region. Our compression scheme covers both blind and visible compression models (and other models in between) depending on the structure of the side information system.