论文标题
部分可观测时空混沌系统的无模型预测
Room-temperature coherent optical manipulation of single-hole spins in solution-grown perovskite quantum dots
论文作者
论文摘要
操纵固态自旋连贯性是量子信息处理的重要范式。当前系统要么在非常低的温度下运行,要么难以扩展。因此,在室温下可以连贯地操纵其旋转的低成本,可扩展的材料,因此对于量子信息科学的可持续未来而言,具有很高的吸引力。在这里,我们报告了在溶液生长的CSPBBR3 Perovskite QD中,环境条件全光初始化,单孔旋转的操作和读数。单孔旋转是通过圆形飞行脉冲脉冲激发后的亚皮秒电子清除来获得的。横向磁场可引起自旋进动,第二次离子飞秒脉冲脉冲相干地通过较强的轻度 - 旋转旋转旋转。这些操作在室温下几乎完成了单孔旋转的量子状态控制。
Manipulation of solid-state spin coherence is an important paradigm for quantum information processing. Current systems either operate at very low temperatures or are difficult to scale-up. Developing low-cost, scalable materials whose spins can be coherently manipulated at room temperature is thus highly-attractive for a sustainable future of quantum information science. Here we report ambient-condition all-optical initialization, manipulation and readout of single-hole spins in an ensemble of solution-grown CsPbBr3 perovskite QDs. Single-hole spins are obtained by sub-picosecond electron scavenging following a circularly-polarized femtosecond-pulse excitation. A transversal magnetic field induces spin precession, and a second off-resonance femtosecond-pulse coherently rotates hole spins via strong light-matter interaction. These operations accomplish nearly complete quantum-state control of single-hole spins at room temperature.