论文标题
批量重归化和AD/CFT对应关系
Bulk renormalization and the AdS/CFT correspondence
论文作者
论文摘要
我们为抗DE保姆时空中的QFT制定了系统的重新归一化程序。使用测量点分解法调节紫外线无限态,该方法尊重ADS异构体,而IR无限率则通过切断径向的方向来调节IR的无限态(如全息重质量化)。重新归一化的理论是通过引入拉格朗日和散装场(双操作员的来源)的所有参数的$ z $因子以及边界反式行动的所有参数的定义,$ s _ {\ rm ct} $,以便删除UV和IR调节器的限制存在。结果在一般方案依赖性(反映了平面空间中的类似结果),并且需要重新归一化条件。这些可以由双CFT(或通过广告中的字符串理论)提供。我们的分析也归功于Feynman规则有关Witten图的第一原则。 IR差异的存在和处理对于正确考虑双重操作员的异常维度至关重要。我们将方法应用于标量$φ^4 $理论,并将双重操作员的重新归一化的2分函数获取到2循环,将重新归一化的4点函数转换为1循环订单,用于任何维度$Δ$和散装时间内尺寸的运算符,最高$ d+d+1 $ = 7 $。
We develop a systematic renormalization procedure for QFT in anti-de Sitter spacetime. UV infinities are regulated using a geodesic point-splitting method, which respects AdS isometries, while IR infinities are regulated by cutting off the radial direction (as in holographic renormalization). The renormalized theory is defined by introducing $Z$ factors for all parameters in the Lagrangian and the boundary conditions of bulk fields (sources of dual operators), and a boundary counterterm action, $S_{\rm ct}$, such that the limit of removing the UV and IR regulators exists. The results are in general scheme dependent (mirroring the analogous result in flat space) and require renormalization conditions. These may be provided by the dual CFT (or by string theory in AdS). Our analysis amounts also to a first principles derivation of the Feynman rules regarding Witten diagrams. The presence and treatment of IR divergences is essential for correctly accounting for anomalous dimensions of dual operators. We apply the method to scalar $Φ^4$ theory and obtain the renormalized 2-point function of the dual operator to 2-loops, and the renormalized 4-point function to 1-loop order, for operators of any dimension $Δ$ and bulk spacetime dimension up to $d+1=7$.