论文标题

Q-net:询问信息的几片医疗图像细分

Q-Net: Query-Informed Few-Shot Medical Image Segmentation

论文作者

Shen, Qianqian, Li, Yanan, Jin, Jiyong, Liu, Bin

论文摘要

深度学习在计算机视觉上取得了巨大的成功,而由于数据注释的稀缺性,医疗图像分割(MIS)仍然是一个挑战。几次分割(Meta-fs)的元学习技术已被广泛用于应对这一挑战,而它们忽略了查询图像和支持集之间可能的分配变化。相比之下,经验丰富的临床医生可以通过从查询图像借用信息,然后相应地对其先前的认知模型进行微调或校准,从而解决和解决此类转变。在此灵感的启发下,我们提出了一种Q-net,这是一种质疑的meta-fss方法,它在精神上模仿了专家临床医生的学习机制。我们基于ADNET构建Q-NET,这是一种最近提出的异常检测启发的方法。具体而言,我们将两个查询信息的计算模块添加到ADNET中,即一个查询信息的阈值适应模块和一个查询信息的原型细化模块。将它们与特征提取模块的双路扩展相结合,Q-NET在广泛使用的腹部和心脏磁共振(MR)图像数据集上实现了最先进的性能。我们的作品通过利用查询信息来改善元FSS技术的新颖方式来阐明。

Deep learning has achieved tremendous success in computer vision, while medical image segmentation (MIS) remains a challenge, due to the scarcity of data annotations. Meta-learning techniques for few-shot segmentation (Meta-FSS) have been widely used to tackle this challenge, while they neglect possible distribution shifts between the query image and the support set. In contrast, an experienced clinician can perceive and address such shifts by borrowing information from the query image, then fine-tune or calibrate her prior cognitive model accordingly. Inspired by this, we propose Q-Net, a Query-informed Meta-FSS approach, which mimics in spirit the learning mechanism of an expert clinician. We build Q-Net based on ADNet, a recently proposed anomaly detection-inspired method. Specifically, we add two query-informed computation modules into ADNet, namely a query-informed threshold adaptation module and a query-informed prototype refinement module. Combining them with a dual-path extension of the feature extraction module, Q-Net achieves state-of-the-art performance on widely used abdominal and cardiac magnetic resonance (MR) image datasets. Our work sheds light on a novel way to improve Meta-FSS techniques by leveraging query information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源