论文标题
对象检测算法的比较街道对象
Comparison of Object Detection Algorithms for Street-level Objects
论文作者
论文摘要
从汽车和交通检测到自动驾驶汽车系统,可以将街道对象的对象检测应用于各种用例。因此,找到最佳的对象检测算法对于有效应用它至关重要。已经发布了许多对象检测算法,许多对象检测算法比较了对象检测算法,但是很少有人比较了最新的算法,例如Yolov5,主要是侧重于街道级对象。本文比较了各种单阶段探测器算法; SSD Mobilenetv2 FPN-Lite 320x320,Yolov3,Yolov4,Yolov5L和Yolov5s在实时图像中用于街道对象检测。该实验利用了带有3,169张图像的修改后的自动驾驶汽车数据集。数据集分为火车,验证和测试;然后,使用恢复,色相转移和噪音对其进行预处理和增强。然后对每种算法进行训练和评估。基于实验,算法根据推论时间及其精度,召回,F1得分和平均平均精度(MAP)产生了不错的结果。结果还表明,Yolov5l的映射@.5 of 0.593,Mobilenetv2 fpn-lite在其他算法方面的表现优于其他算法,在其他算法上,Mobilenetv2 fpn-lite的推理时间最快的推理时间最快,而推理时间仅为3.20ms。还发现Yolov5s是最有效的,它具有Yolov5L精度和速度几乎与MobilenetV2 FPN-Lite一样快。这表明各种算法适用于街道级对象检测,并且足够可行,可以在自动驾驶汽车中使用。
Object detection for street-level objects can be applied to various use cases, from car and traffic detection to the self-driving car system. Therefore, finding the best object detection algorithm is essential to apply it effectively. Many object detection algorithms have been released, and many have compared object detection algorithms, but few have compared the latest algorithms, such as YOLOv5, primarily which focus on street-level objects. This paper compares various one-stage detector algorithms; SSD MobileNetv2 FPN-lite 320x320, YOLOv3, YOLOv4, YOLOv5l, and YOLOv5s for street-level object detection within real-time images. The experiment utilizes a modified Udacity Self Driving Car Dataset with 3,169 images. Dataset is split into train, validation, and test; Then, it is preprocessed and augmented using rescaling, hue shifting, and noise. Each algorithm is then trained and evaluated. Based on the experiments, the algorithms have produced decent results according to the inference time and the values of their precision, recall, F1-Score, and Mean Average Precision (mAP). The results also shows that YOLOv5l outperforms the other algorithms in terms of accuracy with a [email protected] of 0.593, MobileNetv2 FPN-lite has the fastest inference time among the others with only 3.20ms inference time. It is also found that YOLOv5s is the most efficient, with it having a YOLOv5l accuracy and a speed almost as quick as the MobileNetv2 FPN-lite. This shows that various algorithm are suitable for street-level object detection and viable enough to be used in self-driving car.