论文标题

互动梦想神经网络

Interacting Dreaming Neural Networks

论文作者

Zanin, Pietro, Caticha, Nestor

论文摘要

我们研究了代理的相互作用,其中每个代理都由一个相关记忆神经网络组成,该网络具有相同的记忆模式和可能不同的强化未实现的梦想期。使用副本方法,我们获得了耦合剂的富平衡相图。它显示了诸如学生过程阶段之类的阶段,在该阶段中,仅一个网络从交互中受益,而另一个网络不受影响。互助阶段,两者都受益;一个冷漠的阶段和一个不足的阶段,既没有受益也没有受损;一种不变的阶段,其中一种阶段是不变的,另一种是损坏的。除了顺磁性和自旋玻璃相外,我们还称之为增强的妄想阶段,在该阶段中,代理在没有有限重叠的内存模式的情况下同意。对于零耦合常数,该模型成为增强和拆除梦想模型,而没有梦想是Hopfield模型。对于有限的耦合和单个内存模式,它成为Ashkin-Teller模型的Mattis版本。除了分析结果外,我们还通过蒙特卡洛模拟探索了该模型。

We study the interaction of agents, where each one consists of an associative memory neural network trained with the same memory patterns and possibly different reinforcement-unlearning dreaming periods. Using replica methods, we obtain the rich equilibrium phase diagram of the coupled agents. It shows phases such as the student-professor phase, where only one network benefits from the interaction while the other is unaffected; a mutualism phase, where both benefit; an indifferent phase and an insufficient phase, where neither are benefited nor impaired; a phase of amensalism where one is unchanged and the other is damaged. In addition to the paramagnetic and spin glass phases, there is also one we call the reinforced delusion phase, where agents concur without having finite overlaps with memory patterns. For zero coupling constant, the model becomes the reinforcement and removal dreaming model, which without dreaming is the Hopfield model. For finite coupling and a single memory pattern, it becomes a Mattis version of the Ashkin-Teller model. In addition to the analytical results, we have explored the model with Monte Carlo simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源