论文标题

通过自动体重调整联邦学习和个性化来实现皮肤病学诊断的公平性

Achieving Fairness in Dermatological Disease Diagnosis through Automatic Weight Adjusting Federated Learning and Personalization

论文作者

Xu, Gelei, Wu, Yawen, Hu, Jingtong, Shi, Yiyu

论文摘要

皮肤病学疾病对全球健康构成了重大威胁,影响了世界上近三分之一的人口。各种研究表明,早期诊断和干预通常对预后和预后至关重要。为此,在过去的十年中,基于深度学习的智能手机应用程序的快速发展,这使用户可以方便而及时地识别出围绕其皮肤出现的问题。为了收集深度学习所需的足够数据,并同时保护患者隐私,经常使用联合学习,在该数据集合数据集局部局部汇总。但是,现有的联合学习框架主要旨在优化整体性能,而常见的皮肤病学数据集则严重不平衡。在将联合学习应用于此类数据集时,可能会发生诊断准确性的显着差异。为了解决这样的公平问题,本文提出了一个公平意识的联邦学习框架,用于皮肤病学诊断。该框架分为两个阶段:在第一个FL阶段,具有不同皮肤类型的客户在联合学习过程中接受了训练,以构建所有皮肤类型的全球模型。在此过程中使用自动重量聚合器将更高的权重分配给损失较高的客户,并且聚合器的强度取决于损失之间的差异水平。在后一个FL阶段,每个客户都根据FL阶段的全球模型微调了其个性化模型。为了获得更好的公平性,为每个客户选择了来自不同时期的模型,以在0.05内保持不同皮肤类型的准确性差异。实验表明,与最先进的框架相比,我们提出的框架有效地提高了公平性和准确性。

Dermatological diseases pose a major threat to the global health, affecting almost one-third of the world's population. Various studies have demonstrated that early diagnosis and intervention are often critical to prognosis and outcome. To this end, the past decade has witnessed the rapid evolvement of deep learning based smartphone apps, which allow users to conveniently and timely identify issues that have emerged around their skins. In order to collect sufficient data needed by deep learning and at the same time protect patient privacy, federated learning is often used, where individual clients aggregate a global model while keeping datasets local. However, existing federated learning frameworks are mostly designed to optimize the overall performance, while common dermatological datasets are heavily imbalanced. When applying federated learning to such datasets, significant disparities in diagnosis accuracy may occur. To address such a fairness issue, this paper proposes a fairness-aware federated learning framework for dermatological disease diagnosis. The framework is divided into two stages: In the first in-FL stage, clients with different skin types are trained in a federated learning process to construct a global model for all skin types. An automatic weight aggregator is used in this process to assign higher weights to the client with higher loss, and the intensity of the aggregator is determined by the level of difference between losses. In the latter post-FL stage, each client fine-tune its personalized model based on the global model in the in-FL stage. To achieve better fairness, models from different epochs are selected for each client to keep the accuracy difference of different skin types within 0.05. Experiments indicate that our proposed framework effectively improves both fairness and accuracy compared with the state-of-the-art.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源