论文标题

进化量子体系结构搜索参数化量子电路

Evolutionary Quantum Architecture Search for Parametrized Quantum Circuits

论文作者

Ding, Li, Spector, Lee

论文摘要

量子计算的最新进展显示了许多问题领域的有希望的计算优势。作为越来越关注的那些领域之一,混合量子古典机器学习系统已经证明了解决各种数据驱动的学习任务的能力。最近的作品表明,参数化的量子电路(PQC)可用于以可证明的学习优势来解决具有挑战性的强化学习(RL)任务。尽管现有的作品产生了基于PQC的方法的潜力,但PQC体系结构的设计选择及其对学习任务的影响通常却没有得到充实。在这项工作中,我们介绍了基于PQC的模型EQAS-PQC,这是一种进化量子体系结构搜索框架,该模型使用基于人群的遗传算法来通过探索量子操作的搜索空间来发展PQC体系结构。实验结果表明,我们的方法可以显着改善混合量子古典模型在解决基准增强问题方面的性能。我们还对量子操作的概率分布进行建模,以表现最佳体系结构,以识别对性能至关重要的基本设计选择。

Recent advancements in quantum computing have shown promising computational advantages in many problem areas. As one of those areas with increasing attention, hybrid quantum-classical machine learning systems have demonstrated the capability to solve various data-driven learning tasks. Recent works show that parameterized quantum circuits (PQCs) can be used to solve challenging reinforcement learning (RL) tasks with provable learning advantages. While existing works yield potentials of PQC-based methods, the design choices of PQC architectures and their influences on the learning tasks are generally underexplored. In this work, we introduce EQAS-PQC, an evolutionary quantum architecture search framework for PQC-based models, which uses a population-based genetic algorithm to evolve PQC architectures by exploring the search space of quantum operations. Experimental results show that our method can significantly improve the performance of hybrid quantum-classical models in solving benchmark reinforcement problems. We also model the probability distributions of quantum operations in top-performing architectures to identify essential design choices that are critical to the performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源