论文标题
圆周盘。 I.冰形成与粘性进化和谷物漂移
Circumplanetary disk ices. I. Ice formation vs. viscous evolution and grain drift
论文作者
论文摘要
木星的大冰卫月在磁盘(CPD)中形成。 CPD通过插入的室外气体和灰尘喂食,在通过光学薄间隙时,可能会在积聚或升华时被冲击。然后将积聚的材料掺入卫星中,落入行星中,或者在相对较短的时间尺度上丢失了磁盘边缘。如果在积聚到CPD的过程中升华冰,我们知道必须有足够的时间来重新构造或卫星(例如甘植)或卡里斯托(Callisto)形成。形成足够冰冷固体的化学时间尺度对CPD的动力学行为和特性产生了新的限制。我们使用辐射热化学代码产品来分析CPD中的径向冰丰度如何演变。我们考虑磁盘的不同初始化学条件,以探索从偶性磁盘继承的插入材料或通过冲击加热将其重置为原子条件的后果。我们将冰形成的时间尺度与粘性进化和径向粉尘漂移的时间尺度对比。从最初的原子条件下,在CPD中可以非常有效地形成水冰,因为在<1年内的粉尘粒上有效地重新沉积了很大的部分。径向谷物漂移的时间尺度通常比晶粒上的冰形成的时间更长。 $ a <3 $ mm的冰冷颗粒在5 au的光学上薄磁盘间隙时保持冰冷的披风,以$ l_* <10 $ l $ _ {\ odot} $。三体反应在CPD的致密中平面条件下在水形成中起重要作用。 CPD中平面必须以10-50的灰尘耗尽灰尘,以产生冰冷伽利略卫星的冰与岩石比的固体。径向谷物漂移不会消除CPD雪地线,这与Galilean卫星的组成梯度一致。
The large icy moons of Jupiter formed in a circumplanetary disk (CPD). CPDs are fed by infalling circumstellar gas and dust which may be shock-heated upon accretion or sublimated while passing through an optically thin gap. Accreted material is then either incorporated into moons, falls into the planet, or is lost beyond the disk edge on relatively short timescales. If ices are sublimated during accretion onto the CPD we know there must be sufficient time for them to recondense or moons such as Ganymede or Callisto could not form. The chemical timescale to form sufficiently icy solids places a novel constraint on the dynamical behaviour and properties of CPDs. We use the radiation thermochemical code ProDiMo to analyze how the radial ice abundance evolves in CPDs. We consider different initial chemical conditions of the disk to explore the consequences of infalling material being inherited from the circumstellar disk or being reset to atomic conditions by shock-heating. We contrast the timescales of ice formation with those of viscous evolution and radial dust drift. Water ice can form very efficiently in the CPD from initially atomic conditions, as a significant fraction is efficiently re-deposited on dust grains within < 1 yr. Radial grain drift timescales are in general longer than those of ice formation on grains. Icy grains of size $a < 3$ mm retain their icy mantles while crossing an optically thin circumstellar disk gap at 5 au for $L_* < 10 $ L$_{\odot}$. Three-body reactions play an important role in water formation in the dense midplane condition of CPDs. The CPD midplane must be depleted in dust relative to the circumstellar disk by a factor 10-50 to produce solids with the ice to rock ratio of the icy Galilean satellites. The CPD snowline is not erased by radial grain drift, which is consistent with the compositional gradient of the Galilean satellites being primordial.