论文标题
Grassmann张量及其在几何形状中的应用
Grassmann Tensors and their applications in geometry
论文作者
论文摘要
在本文中,我们在张量理论中介绍了矢量的张量和一些基本术语的Grassmann Tensor。研究了Grassmann张量的一些基本特性,并使用张量语言来重写Mutliview几何形状中的一些关系和对应关系。最后,我们证明欧几里得空间中的多层底板$ \ r^{n} $也可以简洁地表示为由其顶点产生的Grassmann张量。
In this paper, we introduce the Grassmann tensor by tensor product of vectors and some basic terminology in tensor theory. Some basic properties of the Grassmann tensors are investigated and the tensor language is used to rewrite some relations and correspondences in the mutliview geometry. Finally we show that a polytope in the Euclidean space $\R^{n}$ can also be concisely expressed as the Grassmann tensor generated by its vertices.