论文标题

质量问题:拥抱良好的3D多对象跟踪的质量线索

Quality Matters: Embracing Quality Clues for Robust 3D Multi-Object Tracking

论文作者

Yang, Jinrong, Yu, En, Li, Zeming, Li, Xiaoping, Tao, Wenbing

论文摘要

由于3D对象检测和2D MOT的快速发展,3D多对象跟踪(MOT)已取得了巨大的成就。最近的高级工作通常采用一系列对象属性,例如位置,大小,速度和外观,以3D MOT提供协会的线索。但是,由于某些视觉噪音,例如遮挡和模糊,这些提示可能无法可靠,从而导致跟踪性能瓶颈。为了揭示困境,我们进行了广泛的经验分析,以揭示每个线索的关键瓶颈及其彼此之间的相关性。分析结果激发了我们有效地吸收所有线索之间的优点,并自适应地产生最佳的应对方式。具体而言,我们提出位置和速度质量学习,这有效指导网络估计预测对象属性的质量。基于这些质量估计,我们提出了一种质量感知的对象关联(QOA)策略,以利用质量得分作为实现鲁棒关联的重要参考因素。尽管它很简单,但广泛的实验表明,提出的策略可显着提高2.2%的AMOTA跟踪性能,而我们的方法的表现优于所有现有的最先进的努斯曲(Nuscenes)作品。此外,Qtrack在Nuscenes验证和测试集上实现了48.0%和51.1%的AMOTA跟踪性能,这大大降低了基于纯摄像头和基于激光镜的跟踪器之间的性能差距。

3D Multi-Object Tracking (MOT) has achieved tremendous achievement thanks to the rapid development of 3D object detection and 2D MOT. Recent advanced works generally employ a series of object attributes, e.g., position, size, velocity, and appearance, to provide the clues for the association in 3D MOT. However, these cues may not be reliable due to some visual noise, such as occlusion and blur, leading to tracking performance bottleneck. To reveal the dilemma, we conduct extensive empirical analysis to expose the key bottleneck of each clue and how they correlate with each other. The analysis results motivate us to efficiently absorb the merits among all cues, and adaptively produce an optimal tacking manner. Specifically, we present Location and Velocity Quality Learning, which efficiently guides the network to estimate the quality of predicted object attributes. Based on these quality estimations, we propose a quality-aware object association (QOA) strategy to leverage the quality score as an important reference factor for achieving robust association. Despite its simplicity, extensive experiments indicate that the proposed strategy significantly boosts tracking performance by 2.2% AMOTA and our method outperforms all existing state-of-the-art works on nuScenes by a large margin. Moreover, QTrack achieves 48.0% and 51.1% AMOTA tracking performance on the nuScenes validation and test sets, which significantly reduces the performance gap between pure camera and LiDAR based trackers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源