论文标题

本垒打:通过想象轨迹找到回家的路

Home Run: Finding Your Way Home by Imagining Trajectories

论文作者

de Tinguy, Daria, Mazzaglia, Pietro, Verbelen, Tim, Dhoedt, Bart

论文摘要

当研究不受限制的行为并允许小鼠离开笼子以浏览复杂的迷宫时,小鼠在迷宫中表现出觅食行为,以寻求奖励,不时返回他们的家园,例如喝。令人惊讶的是,当执行这样的``本垒打''时,小鼠并没有遵循确切的反向路径,实际上,入口路径和家居路径几乎没有重叠。最近的工作提出了导航的层次主动推理模型,在该模型中,低级别模型对隐藏状态进行了推断,并提出了解释感官输入的姿势,而高级模型则可以推断出在位置之间移动,从而有效地构建环境地图。但是,使用此``MAP''进行计划,只允许代理找到它以前探索的轨迹,这与观察到的小鼠行为远非如此。在本文中,我们探讨了通过使用低级生成模型来想象潜在但未发现的路径来探讨在计划算法中纳入前路径的方法。我们在网格世界环境中演示了概念证明,展示了代理如何使用从基于像素的观测值中学到的生成模型来准确预测地图中新的,较短的路径,从而导致其起点。

When studying unconstrained behaviour and allowing mice to leave their cage to navigate a complex labyrinth, the mice exhibit foraging behaviour in the labyrinth searching for rewards, returning to their home cage now and then, e.g. to drink. Surprisingly, when executing such a ``home run'', the mice do not follow the exact reverse path, in fact, the entry path and home path have very little overlap. Recent work proposed a hierarchical active inference model for navigation, where the low level model makes inferences about hidden states and poses that explain sensory inputs, whereas the high level model makes inferences about moving between locations, effectively building a map of the environment. However, using this ``map'' for planning, only allows the agent to find trajectories that it previously explored, far from the observed mice's behaviour. In this paper, we explore ways of incorporating before-unvisited paths in the planning algorithm, by using the low level generative model to imagine potential, yet undiscovered paths. We demonstrate a proof of concept in a grid-world environment, showing how an agent can accurately predict a new, shorter path in the map leading to its starting point, using a generative model learnt from pixel-based observations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源