论文标题

Mosete作为钠离子电池的阳极的电化学研究

Electrochemical investigation of MoSeTe as an anode for sodium-ion batteries

论文作者

Mudgal, Priya, Arora, Himani, Pati, Jayashree, Singh, Manish K., Khetri, Mahantesh, Dhaka, Rajendra S.

论文摘要

钠离子电池(SIB)被认为是锂离子电池(LIB)的有效替代品,由于钠的天然丰度和低成本而不是锂。在这种情况下,阳极材料在可充电电池中起着至关重要的作用,以获取高能和功率密度。为了证明过渡金属二北元化(TMD)作为潜在阳极材料,我们通过常规通量方法合成了Mosete样品,并且使用X射线衍射(XRD),现场发射扫描扫描电子显微镜(FESEM),传输电子显微镜(TEM)和Raman Spemprospopy和Raman Spemprospopy和Raman Spemprospopy进行了X射线衍射(XRD),结构和形态。这些特征证实了与p63/MMC空间群和Mosete分层形态的六边形晶体对称性。我们研究了在0.01至3.0〜V的工作电势范围内的SIBS的Mosete作为负电极(阳极)的电化学性能。在半细胞配置中,Mosete作为阳极和Na金属作为计数器/参考电极的当前密度分别为50和100 mag $^{ - 1} $,表现出明显的初始特异性放电能力,约为475和355 mahg $^{ - 1} $。但是,在第二个周期中,容量显着降低了大约$ \ $ \ $ 200〜mahg $^{ - 1} $,但具有$ \ $ \ $ \ $ \ $ \ $ \%\%的库仑效率,这建议对这种材料进行进一步修改以提高其稳定性。循环伏安法(CV)研究揭示了第一周期后材料的可逆性,导致初始峰位置没有变化。电化学阻抗光谱(EIS)测量结果比第10个周期后肯定了新鲜细胞的电荷转移电阻较小。此外,发现提取的扩散系数的订单为10 $^{ - 14} $ cm $^2 $ s $^{ - 1} $。

Sodium ion batteries (SIBs) are considered as an efficient alternative for lithium-ion batteries (LIBs) owing to the natural abundance and low cost of sodium than lithium. In this context, the anode materials play a vital role in rechargeable batteries to acquire high energy and power density. In order to demonstrate transition metal dichalcogenide (TMD) as potential anode materials, we have synthesized MoSeTe sample by conventional flux method, and the structure and morphology are characterized using x-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Raman spectroscopy. These characterisations confirm the hexagonal crystal symmetry with p63/mmc space group and layered morphology of MoSeTe. We investigate the electrochemical performance of a MoSeTe as a negative electrode (anode) for SIBs in the working potential range of 0.01 to 3.0~V. In a half-cell configuration, the MoSeTe as an anode and Na metal as counter/reference electrode exhibits significant initial specific discharge capacities of around 475 and 355 mAhg$^{-1}$ at current densities of 50 and 100 mAg$^{-1}$, respectively. However, the capacity degraded significantly like $\approx$200~mAhg$^{-1}$ in 2nd cycle, but having $\approx$100\% Coulombic efficiency, which suggest for further modification in this material to improve its stability. The cyclic voltammetry (CV) study reveals the reversibility of the material after 1st cycle, resulting no change in the initial peak positions. The electrochemical impedance spectroscopy (EIS) measurements affirms the smaller charge transfer resistance of fresh cells than the cells after 10th cycle. Moreover, the extracted diffusion coefficient is found to be of the order of 10$^{-14}$ cm$^2$s$^{-1}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源