论文标题
相邻的顶点区分图表的电晕产品的总颜色
Adjacent Vertex Distinguishing Total Coloring of Corona Product of Graphs
论文作者
论文摘要
相邻的顶点区分总$ k $ - 颜色的$ g $的$ f $是合适的$ k $ - 颜色$ g $的颜色,使得没有一对相邻的顶点具有相同的颜色集,其中颜色设置为顶点$ v $,$ c^g_f(v g_f(v)$ (g),vu \ in E(g)\} $。在2005年,张等人。发布了猜想(AVDTCC),每个简单的图形$ g $都有相邻的顶点区分总$(δ(g)+3)$ - 着色。在本文中,我们确认了许多冠状动脉的猜想,尤其是图形的广义,简单和$ l $ coronas,而不是将结果与特定图形类联系起来。
An adjacent vertex distinguishing total $k$-coloring $f$ of a graph $G$ is a proper total $k$-coloring of $G$ such that no pair of adjacent vertices has the same color sets, where the color set at a vertex $v$, $C^G_f(v)$, is $\{f(v)\} \cup \{f(vu)|u \in V (G), vu \in E(G)\}$. In 2005 Zhang et al. posted the conjecture (AVDTCC) that every simple graph $G$ has adjacent vertex distinguishing total $(Δ(G)+3)$-coloring. In this paper we confirm the conjecture for many coronas, in particular for generalized, simple and $l$-coronas of graphs, not relating the results to particular graph classes.