论文标题

递归可行的概率安全在线学习,并具有控制障碍功能

Recursively Feasible Probabilistic Safe Online Learning with Control Barrier Functions

论文作者

Castañeda, Fernando, Choi, Jason J., Jung, Wonsuhk, Zhang, Bike, Tomlin, Claire J., Sreenath, Koushil

论文摘要

基于学习的控制最近显示了为各种应用程序执行复杂任务的出色功效。但是,要将其部署在实际系统中,保证系统将保持安全至关重要。控制屏障功能(CBFS)提供了用于设计具有已知动力学系统的安全性控制器的数学工具。在本文中,我们首先介绍了使用高斯流程(GP)回归对基于CBF的安全关键控制器的模型无知的重新制定,以缩小近似数学模型与真实系统之间的差距,从而导致二阶锥体程序(SOCP)基于基于基于的控制控制设计。然后,我们介绍了由此产生的安全控制器的可行性条件,突出了可用系统信息必须满足安全性以确保安全的水平。我们使用这些条件来设计一种事件触发的在线数据收集策略,以确保学习安全控制器的递归可行性。我们的方法是通过不断推理当前信息是否足以确保安全性或需要进行主动安全探索的新测量以减少不确定性的工作来起作用。结果,我们提出的框架可以保证CBF定义的安全集的正向不变性,即使它包含先验未探索的区域,也可以保证它的概率很高。我们在两个数值模拟实验中验证了所提出的框架。

Learning-based control has recently shown great efficacy in performing complex tasks for various applications. However, to deploy it in real systems, it is of vital importance to guarantee the system will stay safe. Control Barrier Functions (CBFs) offer mathematical tools for designing safety-preserving controllers for systems with known dynamics. In this article, we first introduce a model-uncertainty-aware reformulation of CBF-based safety-critical controllers using Gaussian Process (GP) regression to close the gap between an approximate mathematical model and the real system, which results in a second-order cone program (SOCP)-based control design. We then present the pointwise feasibility conditions of the resulting safety controller, highlighting the level of richness that the available system information must meet to ensure safety. We use these conditions to devise an event-triggered online data collection strategy that ensures the recursive feasibility of the learned safety controller. Our method works by constantly reasoning about whether the current information is sufficient to ensure safety or if new measurements under active safe exploration are required to reduce the uncertainty. As a result, our proposed framework can guarantee the forward invariance of the safe set defined by the CBF with high probability, even if it contains a priori unexplored regions. We validate the proposed framework in two numerical simulation experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源