论文标题

随机PDES的域分解:基于概率的丝带杆的开发两级预处理

Domain Decomposition of Stochastic PDEs: Development of Probabilistic Wirebasket-based Two-level Preconditioners

论文作者

Desai, Ajit, Khalil, Mohammad, Pettit, Chris L., Poirel, Dominique, Sarkar, Abhijit

论文摘要

现实的物理现象在输入和输出过程中的许多尺度上表现出随机波动。这些现象的模型需要随机PDE。例如,对于三维耦合(矢量值)随机PDE(SPDES),例如,在线性弹性中产生,现有的两级域分解求解器具有基于顶点的粗网格的数值和并行分布性。因此,需要具有更好分辨粗网格的新算法。两级求解器的基于概率的金属束基网格在三个维度上设计。这种丰富的粗网格为全局误差传播提供了有效的机制,从而改善了收敛性。这一开发在三个维度处理随机PDE时增强了两级求解器的可伸缩性。在高性能计算(HPC)系统上使用MPI和PETSC库研究了该算法的数值和并行算术。侵入性光谱随机有限元方法(SSFEM)的实施挑战是通过与Fenics通用有限元元素包的耦合域分解求解器来解决的。这项工作概括了侵入性SSFEM来应对各种随机PDE的应用,并强调了基于域分解的求解器和HPC对不确定性定量的有用性。

Realistic physical phenomena exhibit random fluctuations across many scales in the input and output processes. Models of these phenomena require stochastic PDEs. For three-dimensional coupled (vector-valued) stochastic PDEs (SPDEs), for instance, arising in linear elasticity, the existing two-level domain decomposition solvers with the vertex-based coarse grid show poor numerical and parallel scalabilities. Therefore, new algorithms with a better resolved coarse grid are needed. The probabilistic wirebasket-based coarse grid for a two-level solver is devised in three dimensions. This enriched coarse grid provides an efficient mechanism for global error propagation and thus improves the convergence. This development enhances the scalability of the two-level solver in handling stochastic PDEs in three dimensions. Numerical and parallel scalabilities of this algorithm are studied using MPI and PETSc libraries on high-performance computing (HPC) systems. Implementational challenges of the intrusive spectral stochastic finite element methods (SSFEM) are addressed by coupling domain decomposition solvers with FEniCS general purpose finite element package. This work generalizes the applications of intrusive SSFEM to tackle a variety of stochastic PDEs and emphasize the usefulness of the domain decomposition-based solvers and HPC for uncertainty quantification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源