论文标题

有限的可变形网络,用于有效的单图像动态场景,盲目脱毛,并具有空间变化的运动模糊内核估计

A Constrained Deformable Convolutional Network for Efficient Single Image Dynamic Scene Blind Deblurring with Spatially-Variant Motion Blur Kernels Estimation

论文作者

Tang, Shu, Wu, Yang, Qin, Hongxing, Xie, Xianzhong, Yang, Shuli, Wang, Jing

论文摘要

大多数现有的基于深度学习的单图像动态场景盲目脱毛(SIDSBD)方法通常设计深网络,以直接从一个输入的运动模糊图像中直接删除空间变化的运动模糊,而无需模糊的内核估计。在本文中,受投射运动路径模糊(PMPB)模型和可变形卷积的启发,我们提出了一个新颖的限制性变形卷积网络(CDCN),以实现有效的单图像动态场景盲目脱毛,从而同时实现了准确的空间变化,从而仅通过一种从一位估计和高质量的运动图像进行了一幅模拟运动图像,仅实现了一部分的运动图像。在我们提出的CDCN中,我们首先构建一种新型的多尺度多级多输入多输出(MSML-MIMO)编码器架构,以提高功能提取能力。其次,与使用多个连续帧的DLVBD方法不同,提出了一种新颖的可变形卷积升起(CDCR)策略,首先将可变形的卷积应用于输入的单运动模糊图像的模糊特征,以学习学习每个像素的动作模型和动作的相似模型和估算的动作模型和估算的动作模型和估算的功能,并构成了一定的估算。提出了基于新型PMPB的重塑损耗函数来限制学习的采样点的收敛,这可以使学习的采样点与每个像素的相对运动轨迹匹配,并促进空间变化的运动模糊内核估计的准确性。

Most existing deep-learning-based single image dynamic scene blind deblurring (SIDSBD) methods usually design deep networks to directly remove the spatially-variant motion blurs from one inputted motion blurred image, without blur kernels estimation. In this paper, inspired by the Projective Motion Path Blur (PMPB) model and deformable convolution, we propose a novel constrained deformable convolutional network (CDCN) for efficient single image dynamic scene blind deblurring, which simultaneously achieves accurate spatially-variant motion blur kernels estimation and the high-quality image restoration from only one observed motion blurred image. In our proposed CDCN, we first construct a novel multi-scale multi-level multi-input multi-output (MSML-MIMO) encoder-decoder architecture for more powerful features extraction ability. Second, different from the DLVBD methods that use multiple consecutive frames, a novel constrained deformable convolution reblurring (CDCR) strategy is proposed, in which the deformable convolution is first applied to blurred features of the inputted single motion blurred image for learning the sampling points of motion blur kernel of each pixel, which is similar to the estimation of the motion density function of the camera shake in the PMPB model, and then a novel PMPB-based reblurring loss function is proposed to constrain the learned sampling points convergence, which can make the learned sampling points match with the relative motion trajectory of each pixel better and promote the accuracy of the spatially-variant motion blur kernels estimation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源