论文标题
迪德:发现可解释的动态发展关系
DIDER: Discovering Interpretable Dynamically Evolving Relations
论文作者
论文摘要
对动态发展的多种互动的有效理解对于捕获社会系统中代理的潜在行为至关重要。直接观察这些相互作用通常是一项挑战,因此对潜在相互作用进行建模对于实现复杂行为至关重要。动态神经关系推断(DNRI)的最新工作在每个步骤都捕获了明确的互动相互作用。但是,在每个步骤中的预测都会导致嘈杂的相互作用,并且没有事后检查就缺乏内在的解释性。此外,它需要访问地面真理注释来分析难以获得的预测相互作用。本文介绍了Dider,发现了可解释的动态发展关系,这是一种具有内在解释性的通用端到端交互建模框架。 Dider通过将潜在相互作用预测的任务分解为亚相互作用预测和持续时间估计,发现了一个可解释的代理相互作用序列。通过在延长的时间持续时间内强加亚相互作用类型的一致性,所提出的框架可以实现内在的可解释性,而无需进行任何事后检查。我们在合成和现实世界数据集上评估了Dider。实验结果表明,建模解开和可解释的动态关系可改善轨迹预测任务的性能。
Effective understanding of dynamically evolving multiagent interactions is crucial to capturing the underlying behavior of agents in social systems. It is usually challenging to observe these interactions directly, and therefore modeling the latent interactions is essential for realizing the complex behaviors. Recent work on Dynamic Neural Relational Inference (DNRI) captures explicit inter-agent interactions at every step. However, prediction at every step results in noisy interactions and lacks intrinsic interpretability without post-hoc inspection. Moreover, it requires access to ground truth annotations to analyze the predicted interactions, which are hard to obtain. This paper introduces DIDER, Discovering Interpretable Dynamically Evolving Relations, a generic end-to-end interaction modeling framework with intrinsic interpretability. DIDER discovers an interpretable sequence of inter-agent interactions by disentangling the task of latent interaction prediction into sub-interaction prediction and duration estimation. By imposing the consistency of a sub-interaction type over an extended time duration, the proposed framework achieves intrinsic interpretability without requiring any post-hoc inspection. We evaluate DIDER on both synthetic and real-world datasets. The experimental results demonstrate that modeling disentangled and interpretable dynamic relations improves performance on trajectory forecasting tasks.