论文标题
部分可观测时空混沌系统的无模型预测
SpeedFolding: Learning Efficient Bimanual Folding of Garments
论文作者
论文摘要
折叠服装可靠,有效地是由于服装的复杂动力和高维配置空间,在机器人操作中是一个长期的挑战。直观的方法是最初将服装操纵到折叠之前的规范平滑构型。在这项工作中,我们开发了一种可靠且高效的双人系统,将用户定义的说明作为折叠线,将最初弄皱的服装操纵为(1)平滑且(2)折叠配置。我们的主要贡献是一种新型的神经网络体系结构,能够预测成对的抓地姿势,以参数化一组不同的双人作用原始序列。在从4300次人类注销和自我监督的动作中学习后,机器人平均能够从120年代以下的随机初始配置折叠服装,成功率为93%。现实世界实验表明,该系统能够概括到不同颜色,形状和刚度的服装。虽然先前的工作每小时达到3-6倍(FPH),但SpeedFolding却达到30-40 FPH。
Folding garments reliably and efficiently is a long standing challenge in robotic manipulation due to the complex dynamics and high dimensional configuration space of garments. An intuitive approach is to initially manipulate the garment to a canonical smooth configuration before folding. In this work, we develop SpeedFolding, a reliable and efficient bimanual system, which given user-defined instructions as folding lines, manipulates an initially crumpled garment to (1) a smoothed and (2) a folded configuration. Our primary contribution is a novel neural network architecture that is able to predict pairs of gripper poses to parameterize a diverse set of bimanual action primitives. After learning from 4300 human-annotated and self-supervised actions, the robot is able to fold garments from a random initial configuration in under 120s on average with a success rate of 93%. Real-world experiments show that the system is able to generalize to unseen garments of different color, shape, and stiffness. While prior work achieved 3-6 Folds Per Hour (FPH), SpeedFolding achieves 30-40 FPH.