论文标题

部分可观测时空混沌系统的无模型预测

Time evolution of spread complexity in quenched Lipkin-Meshkov-Glick model

论文作者

Afrasiar, Mir, Basak, Jaydeep Kumar, Dey, Bidyut, Pal, Kunal, Pal, Kuntal

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We use the spread complexity of a time evolved state after a sudden quantum quench in the Lipkin-Meshkov-Glick (LMG) model prepared in the ground state as a probe of quantum phase transition when the system is quenched towards the critical point. By studying the growth of the effective number of elements of the Krylov basis, those contribute to the spread complexity more than a preassigned cut off, we show how the two phases of the LMG model can be distinguished. We also explore the time evolution of spread entropy after both non-critical and critical quenches. We show that the sum contributing to the spread entropy converges slowly in the symmetric phase of the LMG model compared to that of the broken phase, and for a critical quench, the spread entropy diverges logarithmically at late times.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源