论文标题

量子分解模型:从多体定位到疤痕的混乱

A Quantum Breakdown Model: from Many-body Localization to Chaos with Scars

论文作者

Lian, Biao

论文摘要

我们提出了一个模拟电介质电解过程的费米斯的量子模型。该型号由每个站点的$ n $ fermion模式组成,并具有保守的费用$ q $。它具有带有混乱$ W $的现场化学势$μ$,以及强度的相互作用$ j $限制了每个费米昂在一个站点前进时会更加激发两个费米子。我们显示了$ n = 3 $模型,$ w = 0 $显示了希尔伯特太空碎片化,除了很少的Krylov子空间外,完全可以解决。分析解决方案表明,$ n = 3 $模型以$ m \ rightarrow \ infty $的形式显示多体定位(MBL),这是稳定的,因为$ w> 0 $,正如我们的确切对角线化(ED)所示。在$ n> 3 $时,我们的ED建议以$ W $ $ w $的量子混乱为$ m/n $减少$ 1 $的量子混乱,并在$ w $ $ w $上持续下降。在$ w = 0 $时,有许多充电$ q $扇区中存在一个完全可解决的多体疤痕扁平带,在热力学限制中具有非零度量。我们进一步计算添加到粒子真空中的费米的时间演变,如果$ w \ ll j $,当$μ/j <1/2 $($μ/j> 1/2 $)时显示出崩溃(介电)阶段,如果$ w \ w \ gg j $,则没有崩溃。

We propose a quantum model of fermions simulating the electrical breakdown process of dielectrics. The model consists of $M$ sites with $N$ fermion modes per site, and has a conserved charge $Q$. It has an on-site chemical potential $μ$ with disorder $W$, and an interaction of strength $J$ restricting each fermion to excite two more fermions when moving forward by one site. We show the $N=3$ model with disorder $W=0$ show a Hilbert space fragmentation and is exactly solvable except for very few Krylov subspaces. The analytical solution shows that the $N=3$ model exhibits many-body localization (MBL) as $M\rightarrow\infty$, which is stable against $W>0$ as our exact diagonalization (ED) shows. At $N>3$, our ED suggests a MBL to quantum chaos crossover at small $W$ as $M/N$ decreases across $1$, and persistent MBL at large $W$. At $W=0$, an exactly solvable many-body scar flat band exists in many charge $Q$ sectors, which has a nonzero measure in the thermodynamic limit. We further calculate the time evolution of a fermion added to the particle vacuum, which shows a breakdown (dielectric) phase when $μ/J<1/2$ ($μ/J>1/2$) if $W\ll J$, and no breakdown if $W\gg J$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源