论文标题

$ m $ -tamari和bicambrian lattices上的rotmotion

Rowmotion on $m$-Tamari and BiCambrian Lattices

论文作者

Defant, Colin, Lin, James

论文摘要

托马斯(Thomas)和威廉姆斯(Williams)猜想,行动的行为$(a,b)$ -Tamari lattice的订单$ a+b-1 $。我们构建了一个模棱两可的培训,该二像bivation证明了当$ b \ equiv 1 \ pmod a $时证明了这一猜想;实际上,在这种情况下,我们确定了行模的整个轨道结构,表明它表现出循环筛分现象。我们还表明,下级统计量对于此动作是同质的。从不同的角度来看,我们考虑了划船对Barnard和Reading的双打晶格的作用。解决了托马斯和威廉姆斯的不同猜想,我们证明,如果$ c $是偶然型coxeter型组的两部分coxeter元素,那么$ c $ bicambrian lattice上的rowmotion的轨道结构与$ rattion $ post $ post $ post post post post post post post post的轨道结构相同。

Thomas and Williams conjectured that rowmotion acting on the rational $(a,b)$-Tamari lattice has order $a+b-1$. We construct an equivariant bijection that proves this conjecture when $b\equiv 1\pmod a$; in fact, we determine the entire orbit structure of rowmotion in this case, showing that it exhibits the cyclic sieving phenomenon. We additionally show that the down-degree statistic is homomesic for this action. In a different vein, we consider the action of rowmotion on Barnard and Reading's biCambrian lattices. Settling a different conjecture of Thomas and Williams, we prove that if $c$ is a bipartite Coxeter element of a coincidental-type Coxeter group $W$, then the orbit structure of rowmotion on the $c$-biCambrian lattice is the same as the orbit structure of rowmotion on the lattice of order ideals of the doubled root poset of type $W$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源