论文标题

通过基于超图的方法来界定柔韧索引编码的最佳长度

Bounding the Optimal Length of Pliable Index Coding via a Hypergraph-based Approach

论文作者

B., Tulasi Sowjanya, Subramanian, Visvesh, Krishnan, Prasad

论文摘要

在柔韧的索引编码(PICOD)中,许多客户端通过无噪声广播通道连接到具有消息列表的服务器。每个客户端在服务器上都有一个唯一的消息子集作为侧面信息,并请求任何一条不在侧面信息中的消息。长度为$ \ ell $的PICOD方案是从服务器广播的$ \ ell $编码的传输,使所有客户端都可以满足。 PICOD中的基本问题是找到长度较小的PICOD和设计PICOD方案的最佳(最小)长度。在本文中,我们使用基于超图的方法来得出PICOD的新可实现性和相反的结果。我们提出了一种算法,该算法为PICOD提供了可实现的方案,最多最多$δ(\ Mathcal {h})$,其中$δ(\ Mathcal {h})$是代表POCOD问题的超图中任何顶点的最大程度。我们还使用与称为嵌套号码的PICOD HyperGraph相关的新结构参数为最佳PICOD长度提供了下限。我们将一些结果扩展到PICOD问题,每个客户都需要$ t $消息,而不仅仅是一个。最后,我们确定了一类问题,我们的匡威紧密,并且还表征了$δ(\ Mathcal {h})\ in \ {1,2,3 \} $的最佳问题长度。

In pliable index coding (PICOD), a number of clients are connected via a noise-free broadcast channel to a server which has a list of messages. Each client has a unique subset of messages at the server as side-information and requests for any one message not in the side-information. A PICOD scheme of length $\ell$ is a set of $\ell$ encoded transmissions broadcast from the server such that all clients are satisfied. Finding the optimal (minimum) length of PICOD and designing PICOD schemes that have small length are the fundamental questions in PICOD. In this paper, we use a hypergraph-based approach to derive new achievability and converse results for PICOD. We present an algorithm which gives an achievable scheme for PICOD with length at most $Δ(\mathcal{H})$, where $Δ(\mathcal{H})$ is the maximum degree of any vertex in a hypergraph that represents the PICOD problem. We also give a lower bound for the optimal PICOD length using a new structural parameter associated with the PICOD hypergraph called the nesting number. We extend some of our results to the PICOD problem where each client demands $t$ messages, rather than just one. Finally, we identify a class of problems for which our converse is tight, and also characterize the optimal PICOD lengths of problems with $Δ(\mathcal{H})\in\{1,2,3\}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源