论文标题
稳定A位点有序的钙钛矿和旋转半磁性晶格的形成:CACU $ _3 $ _3 $ ti $ _4 $ o $ o $ _ {12} $和cacu $ _3 $ _3 $ zr $ _4 $ _4 $ _4 $ _ {12} $
Stabilization of A-site ordered perovskites and formation of spin-half antiferromagnetic lattice: CaCu$_3$Ti$_4$O$_{12}$ and CaCu$_3$Zr$_4$O$_{12}$
论文作者
论文摘要
A站点订购的Perovskites,Cacu $ _3 $ b $ _4 $ o $ $ _ {12} $,它们是常规Abo $ _3 $ perovskites的衍生物,展示了不同的电子和磁性。为了研究Cu在这项工作中的作用,我们研究了Cacu $ _3 $ _4 $ _4 $ o $ $ _ {12} $和CACU $ _3 $ _3 $ ZR $ _4 $ _4 $ _ {12} $在这些系统中稳定非平凡和实验性的G型抗铁磁(G-AFM)排序。补充了声子研究的第一原理电子结构计算表明,cuo $ _ {12} $ icosahedron的jahn-teller扭曲驱动A位点有序的钙钛矿的形成。使用自旋二聚体分析估计的晶体轨道轨道哈密顿人群分析和磁交换相互作用,即最接近和下一个最邻居的相互作用(j $ _1 $和j $ _2 $)是直接的,而弱铁磁性是弱的,而第三尼加伯的互动(j $ _3 $)是由毫无疑问的强度和反式驱动器的。结构几何形状表明,G-AFM的稳定需要J $ _1 $ $ <$ <$ 2J $ _2 $,J $ _1 $ $ $ <$ <$ 2J $ _3 $。 Neel温度的实验和理论值对$ U $ \ $ \ $ 7 eV很好地吻合,突出了强相关的作用。发现磁性排序在压力和应变上是可靠的。
A-site ordered perovskites, CaCu$_3$B$_4$O$_{12}$, which are derivatives of conventional ABO$_3$ perovskites, exhibit varying electronic and magnetic properties. With the objective of examining the role of Cu in this work, we have studied CaCu$_3$Ti$_4$O$_{12}$ and CaCu$_3$Zr$_4$O$_{12}$ and presented the cause of the crystallization of A-site ordered perovskite from conventional ABO$_3$ perovskite and the underlying mechanism leading to the stabilization of non-trivial and experimentally estabilished G-type antiferromagnetic (G-AFM) ordering in these systems. The first-principles electronic structure calculations supplemented with phonon studies show that the formation of A-site ordered perovskite is driven by Jahn-Teller distortion of the CuO$_{12}$ icosahedron. The crystal orbital Hamiltonian population analysis and magnetic exchange interactions estimated using spin dimer analysis infers that the nearest and next-nearest-neighbor interactions (J$_1$ and J$_2$) are direct and weakly ferromagnetic whereas the third-neighbor interaction (J$_3$) is unusually strong and antiferromagnetic driven by indirect superexchange mechanism. The structural geometry reveals that stabilization of G-AFM requires J$_1$ $<$ 2J$_2$, J$_1$ $<$ 2J$_3$. The experimental and theoretical values of Neel Temperature agrees well for $U$ $\approx$ 7 eV, highlighting the role of strong correlation. The magnetic ordering is found to be robust against pressure and strain.