论文标题
量子信息瓶颈的有效算法
Efficient algorithms for quantum information bottleneck
论文作者
论文摘要
提取相关信息的能力对于学习至关重要。信息瓶颈是一种巧妙的方法,这是一个优化问题,其解决方案对应于大型系统中相关信息的忠实和记忆有效的表示。量子计算时代的出现要求采用有效的方法,这些方法可用于量子系统的信息。在这里,我们通过提出一种新的通用算法来解决信息瓶颈的量子概括。与先前的结果相比,我们的算法在收敛的速度和确定性方面擅长。它还适用于更广泛的问题,包括确定性信息瓶颈的量子扩展,这是原始信息瓶颈问题的重要变体。值得注意的是,我们发现,量子系统比量子信息瓶颈具有相同大小的经典系统可以实现严格的性能,从而为证明量子机学习的优势提供了新的愿景。
The ability to extract relevant information is critical to learning. An ingenious approach as such is the information bottleneck, an optimisation problem whose solution corresponds to a faithful and memory-efficient representation of relevant information from a large system. The advent of the age of quantum computing calls for efficient methods that work on information regarding quantum systems. Here we address this by proposing a new and general algorithm for the quantum generalisation of information bottleneck. Our algorithm excels in the speed and the definiteness of convergence compared with prior results. It also works for a much broader range of problems, including the quantum extension of deterministic information bottleneck, an important variant of the original information bottleneck problem. Notably, we discover that a quantum system can achieve strictly better performance than a classical system of the same size regarding quantum information bottleneck, providing new vision on justifying the advantage of quantum machine learning.