论文标题

sciannotate:一种用于整合序列标签弱标记源的工具

SciAnnotate: A Tool for Integrating Weak Labeling Sources for Sequence Labeling

论文作者

Liu, Mengyang, Luo, Haozheng, Thong, Leonard, Li, Yinghao, Zhang, Chao, Song, Le

论文摘要

弱标签是命名实体识别(NER)任务的流行弱监督策略,目的是减少手工制作的注释的必要性。尽管有许多用于NER标签的显着注释工具,但整合弱标记源的主题仍未开发。我们介绍了一种基于网络的工具,用于文本注释,称为ScianNotate,该工具代表科学注释工具。与经常使用的文本注释工具相比,我们的注释工具还可以开发弱标签,除了提供手动注释体验。我们的工具为用户提供了多个用户友好的接口,用于创建弱标签。 SCIANNOTATE还允许用户合并自己的语言模型并可视化其模型的输出以进行评估。在这项研究中,我们以多源弱标签denoising为例,我们利用有条件的有条件的隐藏马尔可夫模型来代替我们工具生成的弱标记。我们还针对包含230个注释材料合成程序的迈索尔提供的数据集评估了我们的注释工具。结果表明,使用弱标签降低的注释时间减少了53.7%,召回率增加了1.6 \%。在线演示可从https://sciannotate.azurewebsites.net/(可以在readme中找到DEMO帐户),但我们没有使用它的模型服务器,请检查模型服务器使用的补充材料中的读数。

Weak labeling is a popular weak supervision strategy for Named Entity Recognition (NER) tasks, with the goal of reducing the necessity for hand-crafted annotations. Although there are numerous remarkable annotation tools for NER labeling, the subject of integrating weak labeling sources is still unexplored. We introduce a web-based tool for text annotation called SciAnnotate, which stands for scientific annotation tool. Compared to frequently used text annotation tools, our annotation tool allows for the development of weak labels in addition to providing a manual annotation experience. Our tool provides users with multiple user-friendly interfaces for creating weak labels. SciAnnotate additionally allows users to incorporate their own language models and visualize the output of their model for evaluation. In this study, we take multi-source weak label denoising as an example, we utilized a Bertifying Conditional Hidden Markov Model to denoise the weak label generated by our tool. We also evaluate our annotation tool against the dataset provided by Mysore which contains 230 annotated materials synthesis procedures. The results shows that a 53.7% reduction in annotation time obtained AND a 1.6\% increase in recall using weak label denoising. Online demo is available at https://sciannotate.azurewebsites.net/(demo account can be found in README), but we don't host a model server with it, please check the README in supplementary material for model server usage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源