论文标题

主动球模型

Active Spherical Model

论文作者

Ikeda, Harukuni

论文摘要

球形模型是一种流行的可解决模型,已应用于描述几种关键现象,例如铁磁过渡,Bose-Einstein凝结,自旋玻璃转换,玻璃转变,堵塞过渡等。在最近的活动物质的最新发展中,我们考虑了由Ornstein-uhlenbeck型自我启动力和持续时间$τ_p$驱动的球形模型。我们表明该模型为有限$τ_p$的Ising通用性。相反,该模型在限制$τ_p\ to \ infty $中表现出随机字段的通用性。

The spherical model is a popular solvable model and has been applied to describe several critical phenomena such as the ferromagnetic transition, Bose-Einstein condensation, spin-glass transition, glass transition, jamming transition, and so on. Motivated by recent developments of active matter, here we consider the spherical model driven by the Ornstein-Uhlenbeck type self-propulsion force with persistent time $τ_p$. We show that the model exhibits the Ising universality for finite $τ_p$. On the contrary, the model exhibits the random field Ising universality in the limit $τ_p\to\infty$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源