论文标题
黑洞热力学的拓扑结构
Topology of black hole thermodynamics in Lovelock gravity
论文作者
论文摘要
在这项工作中,我们提出了一种方便的方法,可以对黑洞热力学进行拓扑分析。利用旋律曲线,黑洞的热力学临界点具有拓扑数量,Brouwer度,这在光滑的变形下反映了系统的内在特性。特别是,在我们的设置中,可以轻松地计算出无需精确解决临界点的方法。这使我们能够方便地研究不同热力学系统之间的拓扑转变,并为它们提供拓扑分类。在此框架中,探索了Lovelock广告黑洞的拓扑结构,并探索了球形地平线几何形状。结果表明,任意维度的带电的黑洞可以分为相同的拓扑类别,而$ d = 7 $和$ d \ geq 8 $未充电的黑洞在不同的拓扑类别中。此外,我们从拓扑的角度重新审视了这些黑洞的不同相结构之间的关系。还讨论了临界点的一些一般拓扑特性。
In this work, we present a convenient method to perform the topological analysis of black hole thermodynamics. Utilizing the spinodal curve, thermodynamic critical points of a black hole are endowed with a topological quantity, Brouwer degree, which reflects intrinsic properties of the system under smooth deformations. Specially, in our setup, it can be easily calculated without exact solution of critical points. This enables us to conveniently investigate the topological transition between different thermodynamic systems, and give a topological classification for them. In this framework, topology of Lovelock AdS black holes with spherical horizon geometry is explored. Results show that charged black holes in arbitrary dimensions can be classified into the same topology class, whereas the $d=7$ and $d \geq 8$ uncharged black holes are in different topology classes. Moreover, we revisit the relation between different phase structures of these black holes from the viewpoint of topology. Some general topological properties of critical points are also discussed.