论文标题

Hoffman-Wielandt类型的不平等,用于某些矩阵多项式的块伴侣矩阵

Hoffman-Wielandt type inequality for block companion matrices of certain matrix polynomials

论文作者

B, Pallavi ., Hadimani, Shrinath, Jayaraman, Sachindranath

论文摘要

具有单一/双随机系数的矩阵多项式构成了该手稿的主题。我们证明,如果$ p(λ)$是二次矩阵多项式,其系数是单位矩阵或双随机矩阵,则在这些系数的某些条件下,相应的块伴随矩阵$ c $是可调的。因此,如果$ q(λ)$是另一个二次矩阵多项式,带有相应的块伴侣矩阵$ d $,则霍夫曼 - 韦兰特类型的不平等适用于块伴侣矩阵$ c $和$ d $。

Matrix polynomials with unitary/doubly stochastic coefficients form the subject matter of this manuscript. We prove that if $P(λ)$ is a quadratic matrix polynomial whose coefficients are either unitary matrices or doubly stochastic matrices, then under certain conditions on these coefficients, the corresponding block companion matrix $C$ is diagonalizable. Consequently, if $Q(λ)$ is another quadratic matrix polynomial with corresponding block companion matrix $D$, then a Hoffman-Wielandt type inequality holds for the block companion matrices $C$ and $D$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源