论文标题
E(K,L)基于Berry-Robnik方法的经典量子系统的级别统计数据
E(k,L) level statistics of classically integrable quantum systems based on the Berry-Robnik approach
论文作者
论文摘要
Makino等人开发的经典集成系统的数量水平统计理论。为了研究水平间距分布(LSD)和水平数量方差(LNV)\ cite {mt03,mmt09}的非波斯顿行为,成功地扩展到了$ e(k,l)$函数的研究,该功能构成了构成最基本的量子,以确定最具统计学性的定量量化定量级别和ln的基本量。在Makino等人的理论中,特征力水平被视为无限许多组成部分的叠加,其形成的形成在远距离的半经典极限\ cite {Robn1998}中得到了浆果 - 罗布尼的支持。我们得出了限制$ e(k,l)$在无限的许多组件的极限中的功能,并在能量水平显示出与泊松统计的偏差时阐明其性能。
Theory of the quantal level statistics of classically integrable system, developed by Makino et al. in order to investigate the non-Poissonian behaviors of level-spacing distribution (LSD) and level-number variance (LNV)\cite{MT03,MMT09}, is successfully extended to the study of $E(K,L)$ function which constitutes a fundamental measure to determine most statistical observables of quantal levels in addition to LSD and LNV. In the theory of Makino et al., the eigenenergy level is regarded as a superposition of infinitely many components whose formation is supported by the Berry-Robnik approach in the far semiclassical limit\cite{Robn1998}. We derive the limiting $E(K,L)$ function in the limit of infinitely many components and elucidates its properties when energy levels show deviations from the Poisson statistics.