论文标题

基于量子产生对抗网络的异常用户行为的检测和评估

Detection and evaluation of abnormal user behavior based on quantum generation adversarial network

论文作者

Pan, Minghua, Wang, Bin, Tao, Xiaoling, Zheng, Shenggen, Situ, Haozhen, Li, Lvzhou

论文摘要

量子计算具有处理高维数据的巨大潜力,利用量子状态内的叠加和并行性的独特能力。当我们浏览嘈杂的中间量子量子(NISQ)时代时,量子计算应用程序的探索已成为引人注目的边界。网络空间安全领域中特别感兴趣的领域是行为检测和评估(BDE)。值得注意的是,鉴于在大量正常数据中,对内部异常行为的检测和评估构成了重大挑战,甚至是其隐藏性质。在本文中,我们介绍了一种针对内部用户分析的新型量子行为检测和评估算法(QBDE)。 QBDE算法包括量子生成对抗网络(QGAN),并结合了用于检测和评估任务的经典神经网络。 QGAN建立在混合体系结构上,包括量子发生器($ g_q $)和经典的鉴别器($ d_c $)。 $ g_q $设计为参数化量子电路(PQC),与经典神经网络$ d_c $合作,以共同增强分析过程。为了应对不平衡的正和负样本的挑战,$ g_q $用于产生负样本。 $ g_q $和$ d_c $均通过梯度下降技术进行了优化。通过广泛的仿真测试和定量分析,我们证实了QBDE算法在检测和评估内部用户异常行为方面的有效性。我们的工作不仅引入了一种新颖的方法来进行异常的行为检测和评估,而且还提出了量子算法的新应用方案。这种范式转移强调了量子计算在应对复杂的网络安全挑战方面的有希望的前景。

Quantum computing holds tremendous potential for processing high-dimensional data, capitalizing on the unique capabilities of superposition and parallelism within quantum states. As we navigate the noisy intermediate-scale quantum (NISQ) era, the exploration of quantum computing applications has emerged as a compelling frontier. One area of particular interest within the realm of cyberspace security is Behavior Detection and Evaluation (BDE). Notably, the detection and evaluation of internal abnormal behaviors pose significant challenges, given their infrequent occurrence or even their concealed nature amidst vast volumes of normal data. In this paper, we introduce a novel quantum behavior detection and evaluation algorithm (QBDE) tailored for internal user analysis. The QBDE algorithm comprises a Quantum Generative Adversarial Network (QGAN) in conjunction with a classical neural network for detection and evaluation tasks. The QGAN is built upon a hybrid architecture, encompassing a Quantum Generator ($G_Q$) and a Classical Discriminator ($D_C$). $G_Q$, designed as a parameterized quantum circuit (PQC), collaborates with $D_C$, a classical neural network, to collectively enhance the analysis process. To address the challenge of imbalanced positive and negative samples, $G_Q$ is employed to generate negative samples. Both $G_Q$ and $D_C$ are optimized through gradient descent techniques. Through extensive simulation tests and quantitative analyses, we substantiate the effectiveness of the QBDE algorithm in detecting and evaluating internal user abnormal behaviors. Our work not only introduces a novel approach to abnormal behavior detection and evaluation but also pioneers a new application scenario for quantum algorithms. This paradigm shift underscores the promising prospects of quantum computing in tackling complex cybersecurity challenges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源