论文标题
高维复合分位数回归:最佳统计保证和快速算法
High-Dimensional Composite Quantile Regression: Optimal Statistical Guarantees and Fast Algorithms
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The composite quantile regression (CQR) was introduced by Zou and Yuan [Ann. Statist. 36 (2008) 1108--1126] as a robust regression method for linear models with heavy-tailed errors while achieving high efficiency. Its penalized counterpart for high-dimensional sparse models was recently studied in Gu and Zou [IEEE Trans. Inf. Theory 66 (2020) 7132--7154], along with a specialized optimization algorithm based on the alternating direct method of multipliers (ADMM). Compared to the various first-order algorithms for penalized least squares, ADMM-based algorithms are not well-adapted to large-scale problems. To overcome this computational hardness, in this paper we employ a convolution-smoothed technique to CQR, complemented with iteratively reweighted $\ell_1$-regularization. The smoothed composite loss function is convex, twice continuously differentiable, and locally strong convex with high probability. We propose a gradient-based algorithm for penalized smoothed CQR via a variant of the majorize-minimization principal, which gains substantial computational efficiency over ADMM. Theoretically, we show that the iteratively reweighted $\ell_1$-penalized smoothed CQR estimator achieves near-minimax optimal convergence rate under heavy-tailed errors without any moment constraint, and further achieves near-oracle convergence rate under a weaker minimum signal strength condition than needed in Gu and Zou (2020). Numerical studies demonstrate that the proposed method exhibits significant computational advantages without compromising statistical performance compared to two state-of-the-art methods that achieve robustness and high efficiency simultaneously.