论文标题

早期错误信息检测的对比域的适应性:关于COVID-19的案例研究

Contrastive Domain Adaptation for Early Misinformation Detection: A Case Study on COVID-19

论文作者

Yue, Zhenrui, Zeng, Huimin, Kou, Ziyi, Shang, Lanyu, Wang, Dong

论文摘要

尽管最近在改善了错误信息检测系统的性能方面取得了进展,但在看不见的领域中分类的错误信息仍然是一个难以捉摸的挑战。为了解决这个问题,一种常见的方法是引入域名评论家并鼓励域名输入功能。但是,早期错误信息通常表明有条件和标签的转变,反对现有的错误信息数据(例如,在COVID-19数据集中的类不平衡),这使此类方法在检测早期错误信息方面的有效性较小。在本文中,我们提出了早期错误信息检测(CANMD)的对比适应网络。具体而言,我们利用伪标签来生成与源数据的联合培训的高信心目标示例。我们还设计了标签校正成分,以估算和纠正源和目标域之间的标签偏移(即类先验)。此外,对比度适应性损失被整合在目标函数中,以减少类内部差异并扩大阶层间差异。因此,改编的模型学习了校正的类先验和两个域之间不变的条件分布,以改善目标数据分布的估计。为了证明所提出的CANMD的有效性,我们研究了COVID-19的早期错误信息检测的案例,并使用多个现实世界数据集进行了广泛的实验。结果表明,与最先进的基线相比,CANMD可以有效地将错误信息检测系统适应未见的Covid-19目标域,并有显着改进。

Despite recent progress in improving the performance of misinformation detection systems, classifying misinformation in an unseen domain remains an elusive challenge. To address this issue, a common approach is to introduce a domain critic and encourage domain-invariant input features. However, early misinformation often demonstrates both conditional and label shifts against existing misinformation data (e.g., class imbalance in COVID-19 datasets), rendering such methods less effective for detecting early misinformation. In this paper, we propose contrastive adaptation network for early misinformation detection (CANMD). Specifically, we leverage pseudo labeling to generate high-confidence target examples for joint training with source data. We additionally design a label correction component to estimate and correct the label shifts (i.e., class priors) between the source and target domains. Moreover, a contrastive adaptation loss is integrated in the objective function to reduce the intra-class discrepancy and enlarge the inter-class discrepancy. As such, the adapted model learns corrected class priors and an invariant conditional distribution across both domains for improved estimation of the target data distribution. To demonstrate the effectiveness of the proposed CANMD, we study the case of COVID-19 early misinformation detection and perform extensive experiments using multiple real-world datasets. The results suggest that CANMD can effectively adapt misinformation detection systems to the unseen COVID-19 target domain with significant improvements compared to the state-of-the-art baselines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源