论文标题

指数的饱和度和渐近的第四个湍流状态

The saturation of exponents and the asymptotic fourth state of turbulence

论文作者

Sreenivasan, Katepalli R., Yakhot, Victor

论文摘要

关于均质和各向同性湍流的惯性范围的最新发现是缩放指数$ζ_n$的饱和,用于大$ n $,通过$ n $的结构函数定义为$ n $ aS $ s_ {n}(r)= \ overline = \ overline {(Δ_ru){(δ_ru)我们专注于$Δ_Ru $的纵向结构在两个位置之间的$δ_ru $ $ $ $ $ $ $ $ $。在以前的论文(Phys。V。\ fluids 6,104604,2021)中,我们开发了一个用于$ζ_N$的理论,该理论与所有可靠数据的$ n $相符,并显示出可靠的$ N $,并显示了大型$ n $的饱和度。在这里,我们为四种不同的湍流状态(包括对应于大型$ n $的指数的饱和度对应的渐近式第四状态,包括$Δ_Ru $ $Δ_ru $的概率密度函数的表达式。这种饱和度意味着尺度分离是违反了强键耦合的准级流结构的,该结构的形式为长而薄(类似蠕虫的)长度$ l $和厚度$ l = o(l/re)$的结构。

A recent discovery about the inertial range of homogeneous and isotropic turbulence is the saturation of the scaling exponents $ζ_n$ for large $n$, defined via structure functions of order $n$ as $S_{n}(r)=\overline{(δ_r u)^{n}}=A(n)r^{ζ_{n}}$. We focus on longitudinal structure functions for $δ_r u$ between two positions that are $r$ apart in the same direction. In a previous paper (Phys.\ Rev.\ Fluids 6, 104604, 2021), we developed a theory for $ζ_n$, which agrees with measurements for all $n$ for which reliable data are available, and shows saturation for large $n$. Here, we derive expressions for the probability density functions of $δ_r u$ for four different states of turbulence, including the asymptotic fourth state corresponding to the saturation of exponents for large $n$. This saturation means that the scale separation is violated in favor of a strongly-coupled quasi-ordered flow structures, which take the form of long and thin (worm-like) structures of length $L$ and thickness $l=O(L/Re)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源