论文标题
背景不变性测试根据语义接近
Background Invariance Testing According to Semantic Proximity
论文作者
论文摘要
在许多应用中,机器学习(ML)模型需要保持一些不变性质量,例如旋转,大小,强度和背景不变性。与多种类型的方差不同,背景场景的变体不能轻易排序,这使得很难分析相关模型的稳健性和偏见。在这项工作中,我们提出了一种技术解决方案,可根据其语义近距离订购背景场景,该场景与包含正在测试的前景对象的目标图像。我们利用对象识别的结果作为每个图像的语义描述,并构建一个本体,用于使用关联分析在不同对象之间存储有关关系的知识。该本体学使(i)有效而有意义的搜索对目标图像的不同语义距离的背景场景,(ii)对采样背景场景的分布和稀疏性进行定量控制,以及(iii)使用不变性测试结果的视觉表示(称为差异矩阵)的质量保证。在本文中,我们还报告了对ML4ML评估器的培训,以自动评估ML模型的不变性质量。
In many applications, machine learned (ML) models are required to hold some invariance qualities, such as rotation, size, intensity, and background invariance. Unlike many types of variance, the variants of background scenes cannot be ordered easily, which makes it difficult to analyze the robustness and biases of the models concerned. In this work, we present a technical solution for ordering background scenes according to their semantic proximity to a target image that contains a foreground object being tested. We make use of the results of object recognition as the semantic description of each image, and construct an ontology for storing knowledge about relationships among different objects using association analysis. This ontology enables (i) efficient and meaningful search for background scenes of different semantic distances to a target image, (ii) quantitative control of the distribution and sparsity of the sampled background scenes, and (iii) quality assurance using visual representations of invariance testing results (referred to as variance matrices). In this paper, we also report the training of an ML4ML assessor to evaluate the invariance quality of ML models automatically.