论文标题

关于表面上的补充的评论

Remark on complements on surfaces

论文作者

Liu, Jihao

论文摘要

我们对任何维度的特殊对的奇异对奇异性进行了明确的表征。特别是,我们表明任何异常的Fano Surface都是$ \ frac {1} {42} $ -LC。作为冠冕,我们表明任何$ \ mathbb r $ - complementary $ x $对于某些整数$ n \ leq 192 \ cdot 84^{128 \ cdot 42^5} \ 10 3 \ sqrt {2} \ cdot 84^{64 \ cdot 42^5} \ about 10^{10^{10.2}} $。尽管后两个值预计远非最佳,但它们是这两个代数不变的表面上的第一个明确上限。

We give an explicit characterization on the singularities of exceptional pairs in any dimension. In particular, we show that any exceptional Fano surface is $\frac{1}{42}$-lc. As corollaries, we show that any $\mathbb R$-complementary surface $X$ has an $n$-complement for some integer $n\leq 192\cdot 84^{128\cdot 42^5}\approx 10^{10^{10.5}}$, and Tian's alpha invariant for any surface is $\leq 3\sqrt{2}\cdot 84^{64\cdot 42^5}\approx 10^{10^{10.2}}$. Although the latter two values are expected to be far from being optimal, they are the first explicit upper bounds of these two algebraic invariants for surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源