论文标题
使用各向异性球形高斯迈向面部姿势估算的公正标签分布学习
Towards Unbiased Label Distribution Learning for Facial Pose Estimation Using Anisotropic Spherical Gaussian
论文作者
论文摘要
面姿势估计是指通过单个RGB图像预测面部取向的任务。这是一个重要的研究主题,在计算机视觉中具有广泛的应用。最近已经提出了基于标签的分布学习(LDL)方法,以实现有希望的结果。但是,现有的LDL方法中有两个主要问题。首先,对标签分布的期望是有偏见的,导致姿势估计。其次,将固定的分布参数用于所有学习样本,严重限制了模型能力。在本文中,我们提出了一种基于各向异性球形高斯(ASG)的LDL方法,以进行面部姿势估计。特别是,我们的方法在单位球体上采用球形高斯分布,该球形不断产生公正的期望。同时,我们引入了一个新的损失功能,该功能使网络可以灵活地学习每个学习样本的分布参数。广泛的实验结果表明,我们的方法在AFLW2000和BIWI数据集上设置了新的最新记录。
Facial pose estimation refers to the task of predicting face orientation from a single RGB image. It is an important research topic with a wide range of applications in computer vision. Label distribution learning (LDL) based methods have been recently proposed for facial pose estimation, which achieve promising results. However, there are two major issues in existing LDL methods. First, the expectations of label distributions are biased, leading to a biased pose estimation. Second, fixed distribution parameters are applied for all learning samples, severely limiting the model capability. In this paper, we propose an Anisotropic Spherical Gaussian (ASG)-based LDL approach for facial pose estimation. In particular, our approach adopts the spherical Gaussian distribution on a unit sphere which constantly generates unbiased expectation. Meanwhile, we introduce a new loss function that allows the network to learn the distribution parameter for each learning sample flexibly. Extensive experimental results show that our method sets new state-of-the-art records on AFLW2000 and BIWI datasets.