论文标题
鼠标动力学行为生物识别技术:调查
Mouse Dynamics Behavioral Biometrics: A Survey
论文作者
论文摘要
在我们的日常生活中利用互联网使我们在数据和系统的隐私和安全性方面变得脆弱。因此,通过改善身份验证机制来保护我们的数据和系统的需求,这些机制预计将是低成本,毫不显眼的,理想的本质上是普遍存在的。行为生物识别模态,例如鼠标动力学(图形用户界面上的鼠标行为(GUI))和小部件的交互(另一种与鼠标动力学密切相关的方式,这些动力学也考虑了GUI交互的目标(小部件),例如链接,按钮和组合盒),可以巩固现有身份验证系统的安全性,因为他们的能力具有独特的功能,以区分他们独特的功能。结果,冒名顶替者可能很难采用这些行为生物识别技术,使其适合身份验证。在本文中,我们对1897年至2023年的小鼠动力学和小部件相互作用的文献进行了调查。我们开始对行为生物识别技术的心理观点进行调查。然后,我们沿以下维度分析文献:数据收集的任务和实验设置,原始属性的分类学,特征提取和数学定义,公开可用的数据集,算法(统计,机器学习和深度学习),数据融合,性能,性能和限制。最后,我们以提出挑战和有前途的研究机会结束了论文。
Utilization of the Internet in our everyday lives has made us vulnerable in terms of privacy and security of our data and systems. Therefore, there is a pressing need to protect our data and systems by improving authentication mechanisms, which are expected to be low cost, unobtrusive, and ideally ubiquitous in nature. Behavioral biometric modalities such as mouse dynamics (mouse behaviors on a graphical user interface (GUI)) and widget interactions (another modality closely related to mouse dynamics that also considers the target (widget) of a GUI interaction, such as links, buttons, and combo-boxes) can bolster the security of existing authentication systems because of their ability to distinguish an individual based on their unique features. As a result, it can be difficult for an imposter to impersonate these behavioral biometrics, making them suitable for authentication. In this paper, we survey the literature on mouse dynamics and widget interactions dated from 1897 to 2023. We begin our survey with an account of the psychological perspectives on behavioral biometrics. We then analyze the literature along the following dimensions: tasks and experimental settings for data collection, taxonomy of raw attributes, feature extractions and mathematical definitions, publicly available datasets, algorithms (statistical, machine learning, and deep learning), data fusion, performance, and limitations. Lastly, we end the paper with presenting challenges and promising research opportunities.