论文标题

Gluonic Evanescent Operators:两环异常尺寸

Gluonic evanescent operators: two-loop anomalous dimensions

论文作者

Jin, Qingjun, Ren, Ke, Yang, Gang, Yu, Rui

论文摘要

Evanescent Operators是一类特殊的操作员,在四维时空中消失,但在$ d =4-2ε$尺寸中却不为零。在本文中,我们继续对纯阳米尔斯理论中的逃生运营商进行系统研究,并着重于它们的两环重新规范化。我们制定了一种有效的策略,以通过结合$ d $维二维单位方法和改进的张量减少技术来计算高维和高长度运算符形式的两环差异。在平面YM理论中,获得了质量差异10基础的两循环异常维度,为此,使用$ \ edimelline {\ text {ms}} $方案和有限的肾上腺化方案。我们验证在Wilson-Fisher保形固定点的这两个方案中,两环异常的尺寸是相同的。我们的计算表明,逃生的操作员是必不可少的,以获得正确的两环异常尺寸。这项工作提供了对尺寸10运算符的完整集合的两循环异常维度的首次计算。我们使用的方法还有望为一般高维操作员的两环重新归一化提供有效的策略。

Evanescent operators are a special class of operators that vanish in four-dimensional spacetime but are non-zero in $d=4-2ε$ dimensions. In this paper, we continue our systematic study of the evanescent operators in the pure Yang-Mills theory and focus on their two-loop renormalization. We develop an efficient strategy to compute the two-loop divergences of form factors of high-dimensional and high-length operators by combining the $d$-dimensional unitarity method and the improved tensor reduction techniques. Two-loop anomalous dimensions are obtained for the mass-dimension-10 basis in the planar YM theory, for which both the $\overline{\text{MS}}$ scheme and the finite-renormalization scheme are used. We verify that the two-loop anomalous dimensions are the same in these two schemes at the Wilson-Fisher conformal fixed point. Our computation shows that the evanescent operators are indispensable in order to obtain the correct two-loop anomalous dimensions. This work provides a first computation of the two-loop anomalous dimensions of the complete set of dimension-10 operators. The method we use is also expected to provide an efficient strategy for the two-loop renormalization of general high-dimensional operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源